找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Affine Group Schemes; William C. Waterhouse Textbook 1979 Springer-Verlag New York Inc. 1979 Abelian group.Algebra.Algebra

[復(fù)制鏈接]
樓主: Concave
31#
發(fā)表于 2025-3-26 21:37:39 | 只看該作者
32#
發(fā)表于 2025-3-27 01:23:56 | 只看該作者
33#
發(fā)表于 2025-3-27 07:50:51 | 只看該作者
Faithful Flatnessthen . ?. . → . ?. . is also an injection. For example, any localization . →. . is flat. Indeed, an element .?. in .?. .= . . is zero iff . = 0 for some . in .; if . injects into . and . is zero in ., it is zero in .. What we really want, however, is a condition stronger than flatness and not satisfied by localizations.
34#
發(fā)表于 2025-3-27 10:58:31 | 只看該作者
Affine Group Schemesa familiar process for constructing a group from a ring. Another such process is GL., where GL.(.) is the group of all 2 × 2 matrices with invertible determinant. Similarly we can form SL. and GL.. In particular there is GL., denoted by the special symbol G.; this is the ., with G.(.) the set of inv
35#
發(fā)表于 2025-3-27 14:57:50 | 只看該作者
36#
發(fā)表于 2025-3-27 19:59:28 | 只看該作者
Representationsl come up later for general ., but the only case of interest now is . = .? ., where . is a fixed .-module. If the action of . here is also .-linear, we say we have a . of . on .. The functor . = Aut.(. ?.) is a group functor; a linear representation of . on . clearly assigns an automorphism to each
37#
發(fā)表于 2025-3-28 01:34:25 | 只看該作者
Algebraic Matrix Groupser only a fixed field .. We call a subset S of . if it is the set of common zeros of some polynomials {.} in .[.,…,.]. Clearly an intersection of closcd sets is closed. Also, if S is the zeros of {.} and . the zeros of {.}} then . ∪ . is the zeros of {. .}, so finite unions of closed sets are closed
38#
發(fā)表于 2025-3-28 02:44:59 | 只看該作者
39#
發(fā)表于 2025-3-28 06:47:10 | 只看該作者
Connected Components and Separable Algebrasted by . = .[.]/(. ? 1). Over the reals there are two points in Spec ., reflecting the decomposition . ? 1 = (. – 1)(. + . + 1). But over the complex numbers the group is isomorphic to ?/3?, and we get three components. Thus base extension can create additional idempotents. To have a complete theory
40#
發(fā)表于 2025-3-28 12:06:28 | 只看該作者
Groups of Multiplicative Types. One calls an . × . matrix . . if the subalgebra .[.] of End(.) is separable. We have of course .[.] ? .[.]/.(.) where .(.) is the minimal polynomial of . Separability then holds iff .[.]?. = .[.] ? .[.]/.(.) is separable over .. This means that . has no repeated roots over ., which is the familia
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 20:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桃园县| 海门市| 江孜县| 略阳县| 宣恩县| 洛扎县| 江安县| 东方市| 莱州市| 双鸭山市| 镇宁| 双流县| 屏山县| 巴彦淖尔市| 金乡县| 吉安县| 迁西县| 塘沽区| 百色市| 宕昌县| 左贡县| 荥阳市| 新邵县| 建瓯市| 全州县| 新丰县| 张家界市| 缙云县| 江华| 上林县| 肥西县| 女性| 旬邑县| 迁安市| 宝山区| 迁西县| 刚察县| 清新县| 东阳市| 商水县| 四子王旗|