找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intersection Theory; William Fulton Book 1998Latest edition Springer-Verlag Berlin Heidelberg 1998 Chern class.Division.Divisor.Equivalenc

[復(fù)制鏈接]
樓主: CURD
21#
發(fā)表于 2025-3-25 06:41:39 | 只看該作者
22#
發(fā)表于 2025-3-25 09:19:23 | 只看該作者
Intersection Products,.. Although the case of primary interest is when . is a closed imbedding, so . = .∩., there is significant benefit in allowing general morphisms . Let . be the induced morphism. The normal cone C..to . in . is a closed subcone of ..., of pure dimension . We define . to be the result of intersecting
23#
發(fā)表于 2025-3-25 15:34:51 | 只看該作者
24#
發(fā)表于 2025-3-25 17:28:28 | 只看該作者
25#
發(fā)表于 2025-3-25 22:23:10 | 只看該作者
26#
發(fā)表于 2025-3-26 00:49:40 | 只看該作者
Families of Algebraic Cycles,ally equivalent . 1)-cycles on . determine rationally equivalent k-cycles in each fibre. The basic operations of intersection theory preserve algebraic families. For example, if . is smooth over ., and {α.} and {β.} are algebraic families of cycles, then the intersection products .. · .., also vary
27#
發(fā)表于 2025-3-26 08:05:19 | 只看該作者
Dynamic Intersections, W, and .?. the normal cone to . in . In Chap. 6 the intersection class . in ..(.) has been constructed to be.where ....is the zero-section..If X . Y is imbedded in a family ... x . of regular imbeddings, with . a non-singular curve, 0 ∈ T, X. = ., and . ? . x . is a deformation of ., then there is
28#
發(fā)表于 2025-3-26 08:42:56 | 只看該作者
29#
發(fā)表于 2025-3-26 13:50:08 | 只看該作者
30#
發(fā)表于 2025-3-26 18:55:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴化市| 巫山县| 五河县| 台南市| 光山县| 兰州市| 扎赉特旗| 东乌珠穆沁旗| 昭苏县| 沙洋县| 定襄县| 罗定市| 财经| 九龙城区| 乌审旗| 彝良县| 霍州市| 随州市| 马鞍山市| 达州市| 徐水县| 河北区| 尼玛县| 蓬溪县| 上栗县| 景东| 时尚| 阿拉善盟| 上蔡县| 灵台县| 郑州市| 邹城市| 长沙县| 手机| 邯郸县| 平陆县| 共和县| 普陀区| 耿马| 双辽市| 措美县|