找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: International Conference on Neural Computing for Advanced Applications; 4th International Co Haijun Zhang,Yinggen Ke,Yuanyuan Mu Conference

[復制鏈接]
41#
發(fā)表于 2025-3-28 16:24:29 | 只看該作者
42#
發(fā)表于 2025-3-28 20:36:32 | 只看該作者
43#
發(fā)表于 2025-3-29 02:42:21 | 只看該作者
44#
發(fā)表于 2025-3-29 06:25:42 | 只看該作者
A Bughole Detection Approach for?Fair-Faced Concrete Based on?Improved YOLOv5 feature transmission during the backbone and head part of the model. This allows for the fusing of low-level and high-level features and improves the perception of the detection model on minor flaws. We also construct a dataset of fair-faced concrete surface bugholes and compare our modified YOLOv5
45#
發(fā)表于 2025-3-29 08:39:22 | 只看該作者
46#
發(fā)表于 2025-3-29 13:18:00 | 只看該作者
A Lightweight Sensor Fusion for?Neural Visual Inertial Odometrys with the original input feature maps for adaptive feature correction. This method improves the sensitivity of the model to channel features and enables more accurate image localization. Experimental results show that our algorithm maintains accuracy with a 10. reduction in network parameters compa
47#
發(fā)表于 2025-3-29 19:36:29 | 只看該作者
A Two-Stage Framework for?Kidney Segmentation in?Ultrasound Images a pre-trained model. The second part uses an iterative aggregation strategy for the pre-trained model to optimize it and reduce the noise and other issues in the prediction results. Experimental results show that our algorithm framework outperforms several state-of-the-art methods on kidney ultraso
48#
發(fā)表于 2025-3-29 23:13:40 | 只看該作者
Applicability Method for Identification of Power Inspection Evidence in Multiple Business Scenariosnts have proved that the retrained deep YOLOv3 network recognition model has significantly improved the accuracy of recognizing power marketing inspection images. The shallow recognition model effectively improves the timeliness of recognition. Specifically, four types of businesses were selected to
49#
發(fā)表于 2025-3-30 02:42:01 | 只看該作者
A Deep Learning Algorithm for Synthesizing Magnetic Resonance Images from Spine Computed Tomography method outperforms current main-stream algorithms in MAE and PSNR evaluation metrics. This approach provides a promising solution for generating high-quality MR images from CT images, which can benefit many applications in the field of medical imaging.
50#
發(fā)表于 2025-3-30 07:09:48 | 只看該作者
Physical-Property Guided End-to-End Interactive Image Dehazing Networktion of haze maps for deep dehazing, we design a transmission map guided interactive attention (TMGIA) module to teach an end-to-end information interaction network via dual channel-wise and pixel-wise attention. This way can refine the intermediate features of end-to-end information interaction net
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 13:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
台安县| 泗阳县| 平潭县| 乌拉特中旗| 灯塔市| 旅游| 石台县| 罗田县| 宣化县| 周宁县| 方山县| 开江县| 钟祥市| 科技| 大竹县| 新疆| 济源市| 乌审旗| 东阳市| 新田县| 固阳县| 泗洪县| 仙居县| 华坪县| 锡林郭勒盟| 辛集市| 开封县| 金塔县| 固安县| 安庆市| 丰都县| 扶绥县| 河东区| 淄博市| 峨眉山市| 利津县| 分宜县| 双流县| 从化市| 溆浦县| 舒城县|