找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: International Conference on Neural Computing for Advanced Applications; 4th International Co Haijun Zhang,Yinggen Ke,Yuanyuan Mu Conference

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 16:24:29 | 只看該作者
42#
發(fā)表于 2025-3-28 20:36:32 | 只看該作者
43#
發(fā)表于 2025-3-29 02:42:21 | 只看該作者
44#
發(fā)表于 2025-3-29 06:25:42 | 只看該作者
A Bughole Detection Approach for?Fair-Faced Concrete Based on?Improved YOLOv5 feature transmission during the backbone and head part of the model. This allows for the fusing of low-level and high-level features and improves the perception of the detection model on minor flaws. We also construct a dataset of fair-faced concrete surface bugholes and compare our modified YOLOv5
45#
發(fā)表于 2025-3-29 08:39:22 | 只看該作者
46#
發(fā)表于 2025-3-29 13:18:00 | 只看該作者
A Lightweight Sensor Fusion for?Neural Visual Inertial Odometrys with the original input feature maps for adaptive feature correction. This method improves the sensitivity of the model to channel features and enables more accurate image localization. Experimental results show that our algorithm maintains accuracy with a 10. reduction in network parameters compa
47#
發(fā)表于 2025-3-29 19:36:29 | 只看該作者
A Two-Stage Framework for?Kidney Segmentation in?Ultrasound Images a pre-trained model. The second part uses an iterative aggregation strategy for the pre-trained model to optimize it and reduce the noise and other issues in the prediction results. Experimental results show that our algorithm framework outperforms several state-of-the-art methods on kidney ultraso
48#
發(fā)表于 2025-3-29 23:13:40 | 只看該作者
Applicability Method for Identification of Power Inspection Evidence in Multiple Business Scenariosnts have proved that the retrained deep YOLOv3 network recognition model has significantly improved the accuracy of recognizing power marketing inspection images. The shallow recognition model effectively improves the timeliness of recognition. Specifically, four types of businesses were selected to
49#
發(fā)表于 2025-3-30 02:42:01 | 只看該作者
A Deep Learning Algorithm for Synthesizing Magnetic Resonance Images from Spine Computed Tomography method outperforms current main-stream algorithms in MAE and PSNR evaluation metrics. This approach provides a promising solution for generating high-quality MR images from CT images, which can benefit many applications in the field of medical imaging.
50#
發(fā)表于 2025-3-30 07:09:48 | 只看該作者
Physical-Property Guided End-to-End Interactive Image Dehazing Networktion of haze maps for deep dehazing, we design a transmission map guided interactive attention (TMGIA) module to teach an end-to-end information interaction network via dual channel-wise and pixel-wise attention. This way can refine the intermediate features of end-to-end information interaction net
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 17:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南康市| 防城港市| 耿马| 威海市| 巫溪县| 卓尼县| 岑溪市| 苏州市| 和平区| 万全县| 连南| 章丘市| 湟中县| 上栗县| 藁城市| 和林格尔县| 普安县| 洛川县| 大安市| 竹溪县| 思南县| 都匀市| 灵台县| 房产| 土默特左旗| 定南县| 阿拉善左旗| 巧家县| 满城县| 柳河县| 莱阳市| 禹州市| 双峰县| 鹿邑县| 新郑市| 庆元县| 双峰县| 大同县| 铜陵市| 阜新市| 宁化县|