找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Internal Logic; Foundations of Mathe Yvon Gauthier Book 2002 Springer Science+Business Media B.V. 2002 Arithmetic.Cantor.Finite.logic.mathe

[復(fù)制鏈接]
樓主: Levelheaded
11#
發(fā)表于 2025-3-23 11:53:20 | 只看該作者
12#
發(fā)表于 2025-3-23 17:00:36 | 只看該作者
The Internal Consistency of Arithmetic with Infinite Descent,finite induction and “internal” means that infinite descent will be shown to be self-consistent. I call this arithmetic with infinite descent Fermat arithmetic (.) to contrast it with Peano arithmetic (.) (see Gauthier, 1989). The main idea is to translate logic into arithmetic via a polynomial inte
13#
發(fā)表于 2025-3-23 19:09:13 | 只看該作者
14#
發(fā)表于 2025-3-24 00:22:29 | 只看該作者
Hilbert and the Foundations of Physics,ibutes he claimed for his own general arithmetic. The same Kirchhoff furnished to Hilbert a radiation theory for his early work on foundations of physics (Hilbert, 1965, III, 217–257). What we call now Kirchhoff’s law on the equality between rates of emission and absorbtion of energy in thermal equi
15#
發(fā)表于 2025-3-24 03:09:00 | 只看該作者
Conclusion. Internal Logic : From Kronecker to Hilbert and Beyond,nent of arithmetic and is readily identified to the inferential structure of arithmetic. Internal logic becomes arithmetical or polynomial logic — or modular logic as we shall say later on. The internal structure can be exhibited with the help of ordinary logic (Hilbert says Aristotelian logic) or i
16#
發(fā)表于 2025-3-24 08:48:15 | 只看該作者
17#
發(fā)表于 2025-3-24 13:41:28 | 只看該作者
Yvon Gauthierew approaches to NASA.Gives historical perspectives of the A.Apollo was known for its engineering triumphs, but its success also came from a disciplined management style. This excellent account of one of the most important personalities in early American human spaceflight history describes for the f
18#
發(fā)表于 2025-3-24 18:27:07 | 只看該作者
19#
發(fā)表于 2025-3-24 22:05:32 | 只看該作者
20#
發(fā)表于 2025-3-25 01:49:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 01:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金溪县| 南川市| 扶风县| 丰原市| 大余县| 怀来县| 康定县| 胶南市| 墨竹工卡县| 大悟县| 孟州市| 九江县| 江门市| 上饶县| 开平市| 团风县| 霍山县| 怀远县| 承德市| 靖安县| 富民县| 铜梁县| 华池县| 新野县| 辉南县| 博乐市| 普陀区| 郑州市| 湘潭市| 庆城县| 曲阜市| 肇源县| 剑河县| 岚皋县| 临沂市| 开平市| 澄江县| 鹿泉市| 根河市| 扬州市| 茶陵县|