找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Interactive Theorem Proving; 8th International Co Mauricio Ayala-Rincón,César A. Mu?oz Conference proceedings 2017 Springer International P

[復制鏈接]
樓主: Espionage
11#
發(fā)表于 2025-3-23 10:25:40 | 只看該作者
12#
發(fā)表于 2025-3-23 15:30:11 | 只看該作者
13#
發(fā)表于 2025-3-23 19:51:38 | 只看該作者
Formalization of the Lindemann-Weierstrass Theorem,ve forms of the fundamental theorem of symmetric polynomials. This formalization uses mainly the Mathcomp library for the part relying on algebra, and the Coquelicot library and the Coq standard library of real numbers for the calculus part.
14#
發(fā)表于 2025-3-24 02:09:48 | 只看該作者
CompCertS: A Memory-Aware Verified C Compiler Using Pointer as Integer Semantics,s available..The whole proof of . is a significant proof-effort and we highlight the crux of the novel proofs of 12 passes of the back-end and a challenging proof of an essential optimising pass of the front-end.
15#
發(fā)表于 2025-3-24 03:52:49 | 只看該作者
Formal Verification of a Floating-Point Expansion Renormalization Algorithm, operation. It is a critical step needed to ensure that the resulted expansion has the same property as the input one, and is more “compressed”. The formal proof uncovered several gaps in the pen-and-paper proof and gives the algorithm a very high level of guarantee.
16#
發(fā)表于 2025-3-24 06:31:15 | 只看該作者
FoCaLiZe and Dedukti to the Rescue for Proof Interoperability,, we rely on the structuring features offered by FoCaLiZe, in particular parameterized modules and inheritance to build a formal library of transfer theorems called MathTransfer. We finally illustrate this methodology on the Sieve of Eratosthenes, which we prove correct using HOL and Coq in combination.
17#
發(fā)表于 2025-3-24 13:00:38 | 只看該作者
Conference proceedings 2017, in September 2017...The 28 full papers, 2 rough diamond papers, and 3 invited talk papers presented were carefully reviewed and selected from 65 submissions. The topics range from theoretical foundations to implementation aspects and applications in program verification, security and formalization
18#
發(fā)表于 2025-3-24 17:47:38 | 只看該作者
19#
發(fā)表于 2025-3-24 22:33:57 | 只看該作者
Automating Formalization by Statistical and Semantic Parsing of Mathematics,We show that our learning method allows efficient use of large amount of contextual information, which in turn significantly boosts the precision of the statistical parsing and also makes it more efficient. This leads to a large improvement of our first results in parsing theorems from the Flyspeck corpus.
20#
發(fā)表于 2025-3-25 02:19:55 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-26 22:31
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
含山县| 平谷区| 乐陵市| 孟津县| 水城县| 和顺县| 永吉县| 英山县| 怀柔区| 万年县| 衡南县| 宜春市| 商城县| 彩票| 宽城| 额尔古纳市| 股票| 二手房| 华安县| 晋中市| 大田县| 民丰县| 宜兰市| 咸宁市| 高密市| 石林| 芮城县| 孟村| 佛学| 库尔勒市| 浠水县| 宁陵县| 从江县| 涿鹿县| 壤塘县| 威宁| 绥中县| 镇平县| 图木舒克市| 务川| 平远县|