找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Interactive Theorem Proving; Third International Lennart Beringer,Amy Felty Conference proceedings 2012 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: metamorphose
21#
發(fā)表于 2025-3-25 03:19:25 | 只看該作者
Formalization of Shannon’s Theorems in SSReflect-Coq we produce the first formal proofs of the source coding theorem (that introduces the entropy as the bound for lossless compression), and the direct part of the more difficult channel coding theorem (that introduces the capacity as the bound for reliable communication over a noisy channel).
22#
發(fā)表于 2025-3-25 10:33:44 | 只看該作者
23#
發(fā)表于 2025-3-25 14:29:48 | 只看該作者
24#
發(fā)表于 2025-3-25 17:22:29 | 只看該作者
25#
發(fā)表于 2025-3-25 22:05:42 | 只看該作者
A Refinement-Based Approach to Computational Algebra in ,ons on more efficient data structures and linked to their abstract counterparts. We illustrate this methodology on key applications: matrix rank computation, Winograd’s fast matrix product, Karatsuba’s polynomial multiplication, and the gcd of multivariate polynomials.
26#
發(fā)表于 2025-3-26 02:33:25 | 只看該作者
Applying Data Refinement for Monadic Programs to Hopcroft’s Algorithmd, efficient code in various languages, including Standard ML, Haskell and Scala..In order to demonstrate the practical applicability of our framework, we present a verified implementation of Hopcroft’s algorithm for automata minimisation.
27#
發(fā)表于 2025-3-26 04:41:39 | 只看該作者
28#
發(fā)表于 2025-3-26 08:56:21 | 只看該作者
A Cantor Trio: Denumerability, the Reals, and the Real Algebraic NumbersThe third proof is of the existence of real transcendental (i.e., non-algebraic) numbers. It also appeared in Cantor’s 1874 paper, as a corollary to the non-denumerability of the reals. What Cantor ingeniously showed is that the algebraic numbers are denumerable, so every open interval must contain at least one transcendental number.
29#
發(fā)表于 2025-3-26 14:14:03 | 只看該作者
30#
發(fā)表于 2025-3-26 20:25:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 05:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙胜| 长泰县| 河间市| 荔波县| 嵊州市| 穆棱市| 松阳县| 苏尼特右旗| 大足县| 乡城县| 怀仁县| 曲阜市| 乌拉特前旗| 望江县| 绥江县| 泌阳县| 苍溪县| 贞丰县| 唐山市| 富顺县| 兴隆县| 淮南市| 正宁县| 河曲县| 遂昌县| 敦化市| 石景山区| 扎赉特旗| 荥经县| 调兵山市| 蓝山县| 白山市| 环江| 盐源县| 翼城县| 仙游县| 体育| 凌海市| 镇赉县| 改则县| 凤翔县|