找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Interactive Curve Modeling; With Applications to M. Sarfraz Textbook 2008 Springer-Verlag London 2008 CAE.CAM.Interpolation.Virtual Reality

[復(fù)制鏈接]
樓主: 支票
31#
發(fā)表于 2025-3-26 21:11:49 | 只看該作者
Multiresolution Framework for B-Splines, user wishes to edit the global shape of a complex object. Multiresolution representation is proposed as a solution to alleviate this problem. Various multiresolution methods are described for different B-spline models.
32#
發(fā)表于 2025-3-27 03:56:36 | 只看該作者
Visualization of Shaped Data by a Rational Cubic Spline,cheme has a unique representation. In addition to preserving the shape of positive, monotonic and convex data sets, it also possesses extra features to modify the shape of the design curve when desired. The degree of smoothness attained is C1.
33#
發(fā)表于 2025-3-27 05:57:32 | 只看該作者
34#
發(fā)表于 2025-3-27 12:08:25 | 只看該作者
Corner Detection for Curve Segmentation,ciently the corner points are located. Specifically, in the area of vectorizing planar images, contour segmentation is very often managed by locating the exact corner points. This leads to the piecewise solution of the problem.
35#
發(fā)表于 2025-3-27 14:53:03 | 只看該作者
ary material: Interactive curve modeling techniques and their applications are extremely useful inanumber ofacademicandindustrialsettings.Speci?cally, curvemodelingplays a signi?cant role in multidisciplinary problem solving. It is extremely useful in various situations like font design, designing o
36#
發(fā)表于 2025-3-27 20:21:43 | 只看該作者
Weighted Nu Splines,ne method. In addition, these weighted ν-splines also provide, as special cases, the weighted splines and the ν-splines. The method for evaluating these splines is suggested by a transformation to Bézier form.
37#
發(fā)表于 2025-3-28 01:08:19 | 只看該作者
38#
發(fā)表于 2025-3-28 04:50:04 | 只看該作者
39#
發(fā)表于 2025-3-28 06:57:19 | 只看該作者
40#
發(fā)表于 2025-3-28 14:30:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 23:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
香格里拉县| 武功县| 宜川县| 城步| 张掖市| 潞西市| 古田县| 兴海县| 平远县| 普宁市| 木兰县| 英超| 犍为县| 宁安市| 哈巴河县| 普格县| 景德镇市| 大同县| 娄底市| 天祝| 丹阳市| 大理市| 灵石县| 新宁县| 岗巴县| 灯塔市| 尉犁县| 嘉善县| 宜昌市| 积石山| 高陵县| 杭锦旗| 邹城市| 民丰县| 西乌珠穆沁旗| 乌兰县| 友谊县| 揭东县| 上犹县| 青州市| 长岛县|