找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Interactive Curve Modeling; With Applications to M. Sarfraz Textbook 2008 Springer-Verlag London 2008 CAE.CAM.Interpolation.Virtual Reality

[復(fù)制鏈接]
樓主: 支票
31#
發(fā)表于 2025-3-26 21:11:49 | 只看該作者
Multiresolution Framework for B-Splines, user wishes to edit the global shape of a complex object. Multiresolution representation is proposed as a solution to alleviate this problem. Various multiresolution methods are described for different B-spline models.
32#
發(fā)表于 2025-3-27 03:56:36 | 只看該作者
Visualization of Shaped Data by a Rational Cubic Spline,cheme has a unique representation. In addition to preserving the shape of positive, monotonic and convex data sets, it also possesses extra features to modify the shape of the design curve when desired. The degree of smoothness attained is C1.
33#
發(fā)表于 2025-3-27 05:57:32 | 只看該作者
34#
發(fā)表于 2025-3-27 12:08:25 | 只看該作者
Corner Detection for Curve Segmentation,ciently the corner points are located. Specifically, in the area of vectorizing planar images, contour segmentation is very often managed by locating the exact corner points. This leads to the piecewise solution of the problem.
35#
發(fā)表于 2025-3-27 14:53:03 | 只看該作者
ary material: Interactive curve modeling techniques and their applications are extremely useful inanumber ofacademicandindustrialsettings.Speci?cally, curvemodelingplays a signi?cant role in multidisciplinary problem solving. It is extremely useful in various situations like font design, designing o
36#
發(fā)表于 2025-3-27 20:21:43 | 只看該作者
Weighted Nu Splines,ne method. In addition, these weighted ν-splines also provide, as special cases, the weighted splines and the ν-splines. The method for evaluating these splines is suggested by a transformation to Bézier form.
37#
發(fā)表于 2025-3-28 01:08:19 | 只看該作者
38#
發(fā)表于 2025-3-28 04:50:04 | 只看該作者
39#
發(fā)表于 2025-3-28 06:57:19 | 只看該作者
40#
發(fā)表于 2025-3-28 14:30:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 07:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇信县| 同心县| 岳西县| 银川市| 章丘市| 马边| 建始县| 深圳市| 南阳市| 白山市| 景宁| 清水河县| 遵化市| 新巴尔虎左旗| 黑河市| 海兴县| 潞西市| 镇雄县| 正镶白旗| 古田县| 舟曲县| 涞水县| 康平县| 岢岚县| 八宿县| 怀仁县| 罗山县| 雅江县| 河池市| 木里| 苍山县| 怀安县| 华亭县| 广德县| 元氏县| 南和县| 望城县| 华蓥市| 随州市| 京山县| 九寨沟县|