找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Systems II: Complete Approximation by Neural Network Operators; George A. Anastassiou Book 2016 Springer International Publish

[復(fù)制鏈接]
樓主: eternal
21#
發(fā)表于 2025-3-25 03:31:29 | 只看該作者
22#
發(fā)表于 2025-3-25 08:25:55 | 只看該作者
Fractional Neural Network Operators Approximation,Here we study the univariate fractional quantitative approximation of real valued functions on a compact interval by quasi-interpolation sigmoidal and hyperbolic tangent neural network operators.
23#
發(fā)表于 2025-3-25 14:13:23 | 只看該作者
24#
發(fā)表于 2025-3-25 16:04:21 | 只看該作者
Fractional Voronovskaya Type Asymptotic Expansions for Quasi-interpolation Neural Networks,Here we study further the quasi-interpolation of sigmoidal and hyperbolic tangent types neural network operators of one hidden layer.
25#
發(fā)表于 2025-3-25 21:23:56 | 只看該作者
26#
發(fā)表于 2025-3-26 03:14:21 | 只看該作者
Fractional Approximation by Normalized Bell and Squashing Type Neural Networks,This chapter deals with the determination of the fractional rate of convergence to the unit of some neural network operators, namely, the normalized bell and “squashing” type operators.
27#
發(fā)表于 2025-3-26 06:51:09 | 只看該作者
Fractional Voronovskaya Type Asymptotic Expansions for Bell and Squashing Type Neural Networks,Here we introduce the normalized bell and squashing type neural network operators of one hidden layer.
28#
發(fā)表于 2025-3-26 08:38:37 | 只看該作者
Multivariate Voronovskaya Type Asymptotic Expansions for Normalized Bell and Squashing Type Neural Here we introduce the multivariate normalized bell and squashing type neural network operators of one hidden layer.
29#
發(fā)表于 2025-3-26 15:22:48 | 只看該作者
30#
發(fā)表于 2025-3-26 17:50:22 | 只看該作者
Fuzzy Fractional Approximations by Fuzzy Normalized Bell and Squashing Type Neural Networks,This chapter deals with the determination of the fuzzy fractional rate of convergence to the unit to some fuzzy neural network operators, namely, the fuzzy normalized bell and “squashing” type operators.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安康市| 尤溪县| 辽阳县| 梅州市| 元朗区| 彩票| 麻阳| 夏邑县| 介休市| 民乐县| 平顶山市| 科技| 永康市| 高淳县| 共和县| 皋兰县| 东乌珠穆沁旗| 沈丘县| 昌平区| 繁昌县| 彭阳县| 隆子县| 凤阳县| 揭西县| 五台县| 达州市| 遵化市| 丹棱县| 英吉沙县| 稷山县| 东阳市| 桐庐县| 濮阳市| 仁怀市| 时尚| 石河子市| 慈溪市| 大石桥市| 新安县| 绥阳县| 内黄县|