找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Software Defect Prediction; Xiao-Yuan Jing,Haowen Chen,Baowen Xu Book 2023 The Editor(s) (if applicable) and The Author(s), un

[復(fù)制鏈接]
查看: 51062|回復(fù): 40
樓主
發(fā)表于 2025-3-21 18:06:29 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Intelligent Software Defect Prediction
編輯Xiao-Yuan Jing,Haowen Chen,Baowen Xu
視頻videohttp://file.papertrans.cn/470/469961/469961.mp4
概述Provides a comprehensive introduction to the current state of SDP research.Introduces a range of machine-learning-based SDP approaches proposed for different scenarios.Provides valuable insights and l
圖書封面Titlebook: Intelligent Software Defect Prediction;  Xiao-Yuan Jing,Haowen Chen,Baowen Xu Book 2023 The Editor(s) (if applicable) and The Author(s), un
描述.With the increasing complexity of and dependency on software, software products may suffer from low quality, high prices, be hard to maintain, etc. Software defects usually produce incorrect or unexpected results and behaviors. Accordingly, software defect prediction (SDP) is one of the most active research fields in software engineering and plays an important role in software quality assurance. Based on the results of SDP analyses, developers can subsequently conduct defect localization and repair on the basis of reasonable resource allocation, which helps to reduce their maintenance costs...This book offers a comprehensive picture of the current state of SDP research. More specifically, it introduces a range of machine-learning-based SDP approaches proposed for different scenarios (i.e., WPDP, CPDP, and HDP). In addition, the book shares in-depth insights into current SDP approaches’ performance and lessons learned for future SDP research efforts. ..We believe thesetheoretical analyses and emerging challenges will be of considerable interest to all researchers, graduate students, and practitioners who want to gain deeper insights into and/or find new research directions in SDP.
出版日期Book 2023
關(guān)鍵詞software defect prediction; software quality assurance; software engineering; artificial intelligence; m
版次1
doihttps://doi.org/10.1007/978-981-99-2842-2
isbn_softcover978-981-99-2844-6
isbn_ebook978-981-99-2842-2
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Intelligent Software Defect Prediction影響因子(影響力)




書目名稱Intelligent Software Defect Prediction影響因子(影響力)學(xué)科排名




書目名稱Intelligent Software Defect Prediction網(wǎng)絡(luò)公開度




書目名稱Intelligent Software Defect Prediction網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Intelligent Software Defect Prediction被引頻次




書目名稱Intelligent Software Defect Prediction被引頻次學(xué)科排名




書目名稱Intelligent Software Defect Prediction年度引用




書目名稱Intelligent Software Defect Prediction年度引用學(xué)科排名




書目名稱Intelligent Software Defect Prediction讀者反饋




書目名稱Intelligent Software Defect Prediction讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:42:12 | 只看該作者
Xiao-Yuan Jing,Haowen Chen,Baowen XuProvides a comprehensive introduction to the current state of SDP research.Introduces a range of machine-learning-based SDP approaches proposed for different scenarios.Provides valuable insights and l
板凳
發(fā)表于 2025-3-22 02:11:44 | 只看該作者
地板
發(fā)表于 2025-3-22 05:57:01 | 只看該作者
978-981-99-2844-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
5#
發(fā)表于 2025-3-22 10:09:16 | 只看該作者
Machine Learning Techniques for Intelligent SDP,In this chapter, several common learning algorithms and their applications in software defect prediction are briefly introduced, including deep learning, transfer learning, dictionary learning, semi-supervised learning, and multi-view learning.
6#
發(fā)表于 2025-3-22 14:56:06 | 只看該作者
7#
發(fā)表于 2025-3-22 17:18:35 | 只看該作者
Book 2023oftware defects usually produce incorrect or unexpected results and behaviors. Accordingly, software defect prediction (SDP) is one of the most active research fields in software engineering and plays an important role in software quality assurance. Based on the results of SDP analyses, developers c
8#
發(fā)表于 2025-3-22 23:07:08 | 只看該作者
9#
發(fā)表于 2025-3-23 02:36:39 | 只看該作者
Introduction,he effective allocation or prioritization of quality assurance effort (test effort and code inspection effort). Construction of these prediction models are mostly dependent on historical or previous software project data referred to as a dataset.
10#
發(fā)表于 2025-3-23 06:14:01 | 只看該作者
Within-Project Defect Prediction,y learning (CDDL) approach for software defect classification and prediction. The widely used datasets from NASA projects are employed as test data to evaluate the performance of all compared methods. Experimental results show that CDDL outperforms several representative state-of-the-art defect prediction methods.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 18:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳信县| 商洛市| 萨嘎县| 珠海市| 竹溪县| 沅陵县| 南和县| 大洼县| 盖州市| 昭觉县| 湘阴县| 温州市| 中牟县| 连城县| 思南县| 宁德市| 田林县| 洮南市| 萨迦县| 锦州市| 堆龙德庆县| 开鲁县| 隆尧县| 循化| 梁河县| 精河县| 易门县| 体育| 临澧县| 徐水县| 诸暨市| 雅江县| 凌云县| 宜君县| 运城市| 寿宁县| 马龙县| 巨野县| 治县。| 庄浪县| 辰溪县|