找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Robotics and Applications; 16th International C Huayong Yang,Honghai Liu,Zhiyong Wang Conference proceedings 2023 The Editor(s)

[復(fù)制鏈接]
樓主: 掩飾
41#
發(fā)表于 2025-3-28 17:15:10 | 只看該作者
Large-Parallax Multi-camera Calibration Method for?Indoor Wide-Baseline Scenese multi-camera system by computing the optimal vanishing point through the extraction of orthogonal parallel lines within each camera’s view. This approach begins by extracting orthogonal parallel lines from the image to establish an accurate indoor 3D model. Furthermore, we incorporate the easily o
42#
發(fā)表于 2025-3-28 19:32:28 | 只看該作者
43#
發(fā)表于 2025-3-29 02:52:59 | 只看該作者
All-in-One Image Dehazing Based on?Attention Mechanisme attention mechanism, we use summation operations between the feature layer obtained after each attention operation and the input layer. Our model prioritizes attention to the dense haze region while maintaining overall brightness. Extensive experiments demonstrate that our method surpasses state-o
44#
發(fā)表于 2025-3-29 06:49:23 | 只看該作者
45#
發(fā)表于 2025-3-29 08:43:34 | 只看該作者
FairShare: An Incentive-Based Fairness-Aware Data Sharing Framework for?Federated Learning reliable outcomes. Experiments confirm the VCG-based mechanism’s truthfulness and Shapley Value’s fairness in payment allocation. In conclusion, FairShare addresses fairness challenges and fosters reliability in federated learning, facilitating dependable human-machine interactions. Implementing Fa
46#
發(fā)表于 2025-3-29 14:59:32 | 只看該作者
Combating Label Ambiguity with?Smooth Learning for?Facial Expression Recognitioniscriminative features. The estimated weights adapt to the sparse representation of central loss to selectively achieve intra-class compactness and inter-class separation of relevant information in the embedding space. The proposed ACD approach is superior compared to state-of-the-art
47#
發(fā)表于 2025-3-29 19:07:35 | 只看該作者
EMG Denoising Based on CEEMDAN-PE-WT Algorithmthreshold denoising is applied. Results show that EMG signals denoised by the proposed CEEMDAN-PE-WT algorithm perform a higher signal-to-noise ratio (SNR) and lower root mean square error (RMSE) compared with WT, EMD and CEEMDAN denoising methods.
48#
發(fā)表于 2025-3-29 21:11:47 | 只看該作者
AS-TransUnet: Combining ASPP and Transformer for Semantic Segmentationid module can obtain more receptive fields to obtain multi-scale information. In addition, we add an attention module to the decoder to help the model learn relevant features. To verify the performance and efficiency of the model, we conducted experiments on two common data sets and compared them wi
49#
發(fā)表于 2025-3-29 23:58:40 | 只看該作者
The Application of?Hybrid Dynamic Recurrent Fuzzy Neural Network in?Lower Limb Rehabilitation Functier then proposes a hybrid optimization learning method for the above network, which includes particle swarm optimization (PSO) and recursive least squares estimator (RLSE). PSO modifies the function parameters used to calculate the membership degree to optimize the fitness of fuzzy rules. However, t
50#
發(fā)表于 2025-3-30 05:54:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 10:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蓝田县| 革吉县| 云林县| 保德县| 香格里拉县| 出国| 板桥市| 台北市| 荔波县| 蓝田县| 如皋市| 克拉玛依市| 双牌县| 高密市| 赤城县| 门源| 长沙市| 大埔区| 唐河县| 孟连| 海伦市| 柳江县| 峨眉山市| 苏州市| 瑞丽市| 梅河口市| 晴隆县| 兴和县| 北流市| 越西县| 绥德县| 革吉县| 陇西县| 南陵县| 资阳市| 晴隆县| 海口市| 泾阳县| 澜沧| 鹿邑县| 武冈市|