找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Information Processing XII; 13th IFIP TC 12 Inte Zhongzhi Shi,Jim Torresen,Shengxiang Yang Conference proceedings 2024 IFIP Int

[復(fù)制鏈接]
樓主: Awkward
11#
發(fā)表于 2025-3-23 12:55:47 | 只看該作者
12#
發(fā)表于 2025-3-23 16:52:42 | 只看該作者
Dual Contrastive Learning for?Anomaly Detection in?Attributed Networks existing methods fail to capture the complexity of anomalous patterns at different levels with suitable supervision signals. To address this issue, we propose a novel dual contrastive self-supervised learning method for attributed network anomaly detection. Specifically, our approach relies on two
13#
發(fā)表于 2025-3-23 19:55:21 | 只看該作者
Online Learning in?Varying Feature Spaces with?Informative Variationvary over time due to the emergence of new features and the vanishing of outdated features. This phenomenon is referred to as online learning with Varying Feature Space (VFS). Recently, there has been increasing attention towards exploring this online learning paradigm. However, none of the existing
14#
發(fā)表于 2025-3-24 00:20:24 | 只看該作者
Towards a?Flexible Accuracy-Oriented Deep Learning Module Inference Latency Prediction Framework foror improved task execution efficiency as well as decision-making quality. Due to memory constraints, models are commonly optimized using compression, pruning, and partitioning algorithms to become deployable onto resource-constrained devices. As the conditions in the computational platform change dy
15#
發(fā)表于 2025-3-24 04:03:56 | 只看該作者
Table Orientation Classification Model Based on BERT and TCSMNormation. However, due to their diverse structures and open domains, employing computational methods for their automatic analysis remains a substantial challenge. Among these challenges, accurately classifying the forms of tables is fundamental for achieving deep comprehension and analysis, forming
16#
發(fā)表于 2025-3-24 06:58:09 | 只看該作者
Divide-and-Conquer Strategy for?Large-Scale Dynamic Bayesian Network Structure Learningvarious domains such as gene expression analysis, healthcare, and traffic prediction. Structure learning of DBNs from data is a challenging endeavor, particularly for datasets with thousands of variables. Most current algorithms for DBN structure learning are adaptations from those used in static Ba
17#
發(fā)表于 2025-3-24 12:35:47 | 只看該作者
18#
發(fā)表于 2025-3-24 15:03:34 | 只看該作者
19#
發(fā)表于 2025-3-24 20:05:39 | 只看該作者
Bayesian Personalized Sorting Based on?Time Factors and?Hot Recommendationsh considers the influence of time and incorporates hot recommendations. By extracting user behavior features, constructing an optimized BPR model, and processing recommendation results, we establish BPR-TH for realizing personalized online (or offline) recommendation of digital library information.
20#
發(fā)表于 2025-3-25 01:17:22 | 只看該作者
Design and Implementation of Risk Control Model Based on Deep Ensemble Learning Algorithmthod. In this study, we propose a nested ensemble learning method. First, we employ the stacking framework for selective ensemble learning. Next, we integrate the stacked ensemble with bagging and boosting techniques to create a comprehensive stacked ensemble. We utilized both domestic and foreign o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 21:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
工布江达县| 河间市| 楚雄市| 绥江县| 上栗县| 叙永县| 肥东县| 南召县| 台湾省| 正安县| 康保县| 平江县| 安西县| 南靖县| 红河县| 浪卡子县| 肇源县| 甘孜县| 克拉玛依市| 台东县| 隆德县| 东宁县| 涞水县| 乐清市| 驻马店市| 盐边县| 子洲县| 定日县| 拜城县| 唐山市| 阿城市| 合水县| 屯门区| 涞源县| 察雅县| 织金县| 团风县| 龙海市| 韩城市| 永福县| 宁国市|