找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Data Engineering and Automated Learning – IDEAL 2019; 20th International C Hujun Yin,David Camacho,Richard Allmendinger Confere

[復(fù)制鏈接]
查看: 35789|回復(fù): 65
樓主
發(fā)表于 2025-3-21 17:49:11 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Intelligent Data Engineering and Automated Learning – IDEAL 2019
副標(biāo)題20th International C
編輯Hujun Yin,David Camacho,Richard Allmendinger
視頻videohttp://file.papertrans.cn/470/469591/469591.mp4
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Intelligent Data Engineering and Automated Learning – IDEAL 2019; 20th International C Hujun Yin,David Camacho,Richard Allmendinger Confere
描述.This two-volume set of LNCS 11871 and 11872 constitutes the thoroughly refereed conference proceedings of the 20th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2019, held in Manchester, UK, in November 2019...The 94 full papers presented were carefully reviewed and selected from 149 submissions. These papers provided a timely sample of the latest advances in data engineering and machine learning, from methodologies, frameworks, and algorithms to applications. The core themes of IDEAL 2019 include big data challenges, machine learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspired models (including neural networks, evolutionary computation and swarm intelligence), agents and hybrid intelligent systems, real-world applications of intelligent techniques and AI..
出版日期Conference proceedings 2019
關(guān)鍵詞artificial intelligence; computer network; computer science; computer systems; computer vision; data mini
版次1
doihttps://doi.org/10.1007/978-3-030-33607-3
isbn_softcover978-3-030-33606-6
isbn_ebook978-3-030-33607-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書(shū)目名稱(chēng)Intelligent Data Engineering and Automated Learning – IDEAL 2019影響因子(影響力)




書(shū)目名稱(chēng)Intelligent Data Engineering and Automated Learning – IDEAL 2019影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Intelligent Data Engineering and Automated Learning – IDEAL 2019網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Intelligent Data Engineering and Automated Learning – IDEAL 2019網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Intelligent Data Engineering and Automated Learning – IDEAL 2019被引頻次




書(shū)目名稱(chēng)Intelligent Data Engineering and Automated Learning – IDEAL 2019被引頻次學(xué)科排名




書(shū)目名稱(chēng)Intelligent Data Engineering and Automated Learning – IDEAL 2019年度引用




書(shū)目名稱(chēng)Intelligent Data Engineering and Automated Learning – IDEAL 2019年度引用學(xué)科排名




書(shū)目名稱(chēng)Intelligent Data Engineering and Automated Learning – IDEAL 2019讀者反饋




書(shū)目名稱(chēng)Intelligent Data Engineering and Automated Learning – IDEAL 2019讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:58:59 | 只看該作者
Scalable Dictionary Classifiers for Time Series Classification,ces in a time series. The ensemble based Bag of Symbolic Fourier Approximation Symbols (BOSS) was found to be a top performing TSC algorithm in a recent evaluation, as well as the best performing dictionary based classifier. However, BOSS does not scale well. We evaluate changes to the way BOSS choo
板凳
發(fā)表于 2025-3-22 02:51:03 | 只看該作者
地板
發(fā)表于 2025-3-22 04:39:37 | 只看該作者
5#
發(fā)表于 2025-3-22 09:33:31 | 只看該作者
Classifying Prostate Histological Images Using Deep Gaussian Processes on a New Optical Density Grae cancer using eosin and hematoxylin stained histopathological images. In this work the above problem is approached as follows: the optical density of each whole slide image is calculated and its eosin and hematoxylin concentration components estimated. Then, hand-crafted features, which are expecte
6#
發(fā)表于 2025-3-22 16:42:06 | 只看該作者
7#
發(fā)表于 2025-3-22 18:23:35 | 只看該作者
Using Deep Learning for Ordinal Classification of Mobile Marketing User Conversion,o measure the value of product sales when an user clicks an ad. As a case study, we consider big data provided by a global mobile marketing company. Several experiments were held, considering a rolling window validation, different datasets, learning methods and performance measures. Overall, competi
8#
發(fā)表于 2025-3-22 23:49:23 | 只看該作者
9#
發(fā)表于 2025-3-23 02:45:53 | 只看該作者
,Adaptive Dimensionality Adjustment for Online “Principal Component Analysis”,l growth in available data and the resulting storage requirements are often underestimated bottlenecks. Therefore, efficient dimensionality reduction gets more attention and becomes more relevant. One of the most widely used techniques for dimensionality reduction is “Principal Component Analysis” (
10#
發(fā)表于 2025-3-23 08:50:45 | 只看該作者
Relevance Metric for Counterfactuals Selection in Decision Trees,herent rationale behind model predictions. In the particular case of example-based explanation methods, they are focused on using particular instances, previously defined or created, to explain the behaviour of models or predictions. Counterfactual-based explanation is one of these methods. A counte
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郴州市| 康平县| 同德县| 赞皇县| 长岛县| 手机| 日照市| 大足县| 仁怀市| 老河口市| 余姚市| 安岳县| 青海省| 临高县| 庆阳市| 上饶县| 彩票| 米脂县| 花莲县| 郧西县| 绥化市| 宜良县| 道孚县| 冀州市| 章丘市| 阜康市| 穆棱市| 视频| 葫芦岛市| 娄烦县| 南安市| 汶川县| 蒲江县| 土默特右旗| 栾城县| 望城县| 天门市| 沈丘县| 清水河县| 阜南县| 古丈县|