找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Data Engineering and Analytics; Frontiers in Intelli Suresh Chandra Satapathy,Yu-Dong Zhang,Ritanjali M Conference proceedings

[復制鏈接]
樓主: 喝水
31#
發(fā)表于 2025-3-26 23:46:33 | 只看該作者
32#
發(fā)表于 2025-3-27 02:33:03 | 只看該作者
Sentiment Analysis on Movie Review Using Deep Learning RNN Method,N algorithm instead of machine learning algorithm because machine learning algorithm works only in single layer while RNN algorithm works on multilayer that gives you better output as compared to machine learning.
33#
發(fā)表于 2025-3-27 06:22:48 | 只看該作者
Anaghashree,Sushmita Delcy Pereira,Rao B. Ashwath,Shwetha Rai,N. Gopalakrishna Kini
34#
發(fā)表于 2025-3-27 11:25:51 | 只看該作者
35#
發(fā)表于 2025-3-27 16:05:49 | 只看該作者
Potential of Robust Face Recognition from Real-Time CCTV Video Stream for Biometric Attendance Usinpressions, lighting conditions, and resolution of the image. The wellness of the recognition technique firmly depends on the accuracy of extracted features and also on the ability to deal with the low-resolution face images. The mastery to learn accurate features from raw face images makes deep conv
36#
發(fā)表于 2025-3-27 19:24:07 | 只看該作者
ATM Theft Investigation Using Convolutional Neural Network, (ATM) is common nowadays, in spite of having a surveillance camera inside an ATM as it is not fully integrated to detect crime/theft. On the other hand, we have many image processing algorithms that can help us to detect the covered faces, a person wearing a helmet and some other abnormal features.
37#
發(fā)表于 2025-3-28 01:40:36 | 只看該作者
38#
發(fā)表于 2025-3-28 04:42:23 | 只看該作者
39#
發(fā)表于 2025-3-28 08:22:18 | 只看該作者
40#
發(fā)表于 2025-3-28 12:27:24 | 只看該作者
Two-Way Face Scrutinizing System for Elimination of Proxy Attendances Using Deep Learning,rs, and also has a major impact in facilitating new cutting-edge technologies and innovations. TheInternet of Things, image processing and machine learning are evolving day by day. Many systems have completely changed due to this evolvement to achieve more accurate results. The attendance recording
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 03:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
如东县| 宁晋县| 麦盖提县| 汝南县| 韶关市| 连平县| 滨海县| 喀什市| 从化市| 黑河市| 西吉县| 平顶山市| 玛曲县| 茶陵县| 大庆市| 龙州县| 虹口区| 靖西县| 和硕县| 通榆县| 鱼台县| 河北省| 新绛县| 民县| 陆丰市| 修武县| 志丹县| 威海市| 曲靖市| 阿克苏市| 桦甸市| 阜阳市| 莱州市| 蒙阴县| 金门县| 宾川县| 灵台县| 山西省| 隆林| 开阳县| 札达县|