找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation; Theory and Practice Ravinesh C. Deo,Pijush Samui,Zaher Mundh

[復制鏈接]
查看: 34858|回復: 63
樓主
發(fā)表于 2025-3-21 18:05:52 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation
副標題Theory and Practice
編輯Ravinesh C. Deo,Pijush Samui,Zaher Mundher Yaseen
視頻videohttp://file.papertrans.cn/470/469563/469563.mp4
概述Presents novel applications of artificial neural networks to design practical alert systems for natural hazards.Offers concise theories and case studies on advanced data analytics for real-life decisi
叢書名稱Springer Transactions in Civil and Environmental Engineering
圖書封面Titlebook: Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation; Theory and Practice  Ravinesh C. Deo,Pijush Samui,Zaher Mundh
描述This book highlights cutting-edge applications of machine learning techniques?for disaster management by monitoring, analyzing, and forecasting hydro-meteorological variables.?Predictive modelling is a consolidated discipline used to forewarn the possibility of natural hazards. In this book, experts from numerical weather forecast, meteorology, hydrology, engineering, agriculture, economics, and disaster policy-making contribute towards an interdisciplinary framework to construct potent models for hazard risk mitigation. The book will help advance the state of knowledge of artificial intelligence in decision systems to aid disaster management and policy-making. This book can be a useful reference for graduate student, academics, practicing scientists and professionals of disaster management, artificial intelligence, and? environmental sciences.?
出版日期Book 2021
關鍵詞disaster risk management; artificial intelligence; machine learning algorithms; environmental sciences;
版次1
doihttps://doi.org/10.1007/978-981-15-5772-9
isbn_softcover978-981-15-5774-3
isbn_ebook978-981-15-5772-9Series ISSN 2363-7633 Series E-ISSN 2363-7641
issn_series 2363-7633
copyrightSpringer Nature Singapore Pte Ltd. 2021
The information of publication is updating

書目名稱Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation影響因子(影響力)




書目名稱Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation影響因子(影響力)學科排名




書目名稱Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation網絡公開度




書目名稱Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation網絡公開度學科排名




書目名稱Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation被引頻次




書目名稱Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation被引頻次學科排名




書目名稱Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation年度引用




書目名稱Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation年度引用學科排名




書目名稱Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation讀者反饋




書目名稱Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:48:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:48:06 | 只看該作者
Energy Dissipation in Rough Chute: Experimental Approach Versus Artificial Intelligence Modeling,ccurs at the slopes of 16.4 and 35°, respectively. CCNN model yields excellent performance for predicting of relative energy loss (.?=?0.983 and RMSE?=?0.02). The methodologies are adaptable in real decision support systems for disaster risk mitigation.
地板
發(fā)表于 2025-3-22 04:57:41 | 只看該作者
Spatial Modeling of Soil Erosion Susceptibility with Support Vector Machine,the SVM model performed well in both training (AUC?=?84.1% and TSS?=?0.651) and validation (AUC?=?81.2% and TSS?=?0.62) steps. Therefore, SVM is capable to accurately model soil erosion in data-scarce regions. The adopted methodology can be used as an efficient approach for land-use planning and adopting mitigation strategies.
5#
發(fā)表于 2025-3-22 11:55:03 | 只看該作者
2363-7633 case studies on advanced data analytics for real-life decisiThis book highlights cutting-edge applications of machine learning techniques?for disaster management by monitoring, analyzing, and forecasting hydro-meteorological variables.?Predictive modelling is a consolidated discipline used to forewa
6#
發(fā)表于 2025-3-22 14:27:31 | 只看該作者
Bayesian Markov Chain Monte Carlo-Based Copulas: Factoring the Role of Large-Scale Climate Indices monthly FI that can be predicted at least four months ahead using SOI information. These advanced flood prediction models, presented in this chapter, are indeed imperative tools for civil protection and important to early warning and risk reduction systems.
7#
發(fā)表于 2025-3-22 20:14:52 | 只看該作者
8#
發(fā)表于 2025-3-22 22:24:27 | 只看該作者
2363-7633 seful reference for graduate student, academics, practicing scientists and professionals of disaster management, artificial intelligence, and? environmental sciences.?978-981-15-5774-3978-981-15-5772-9Series ISSN 2363-7633 Series E-ISSN 2363-7641
9#
發(fā)表于 2025-3-23 03:31:16 | 只看該作者
Intelligent Data Analytics for Decision-Support Systems in Hazard MitigationTheory and Practice
10#
發(fā)表于 2025-3-23 08:05:13 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-22 02:29
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
乌兰县| 余姚市| 郸城县| 古蔺县| 故城县| 蒙阴县| 静海县| 阳泉市| 阿瓦提县| 绩溪县| 靖江市| 惠东县| 阿拉尔市| 宁远县| 合水县| 赤水市| 桓仁| 锦州市| 桐梓县| 桑植县| 盖州市| 开封县| 桐梓县| 和田县| 五常市| 宾阳县| 千阳县| 辽宁省| 浦北县| 新巴尔虎左旗| 合川市| 安龙县| 洛南县| 阳高县| 沛县| 沙洋县| 广丰县| 凤山县| 慈利县| 义马市| 西畴县|