找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Computing; Proceedings of the 2 Kohei Arai Conference proceedings 2024 The Editor(s) (if applicable) and The Author(s), under e

[復(fù)制鏈接]
樓主: PLY
11#
發(fā)表于 2025-3-23 10:36:56 | 只看該作者
Challenges of Deepfakes,mocratic processes. This paper delves into the multifaceted challenges posed by deepfakes, emphasizing their potential to mislead, manipulate, and disrupt various domains, including politics, national security, and public discourse. The study highlights the complexity of detecting deepfakes, which a
12#
發(fā)表于 2025-3-23 15:59:24 | 只看該作者
13#
發(fā)表于 2025-3-23 21:21:39 | 只看該作者
Predicting Suicide Cases Using Deep Neural Network,, it is imperative to implement effective suicide prevention strategies. In this context, deep neural network (DNN) algorithms have gained prominence and are increasingly applied across various healthcare domains. In our research, we examined the efficacy of employing DNNs for predicting suicide att
14#
發(fā)表于 2025-3-24 00:54:46 | 只看該作者
15#
發(fā)表于 2025-3-24 04:43:24 | 只看該作者
16#
發(fā)表于 2025-3-24 10:14:31 | 只看該作者
,Deep Feature Discriminability as?a?Diagnostic Measure of?Overfitting in?CNN Models,anced Deep Learning architectures. In this study, we present a novel methodology that identifies and analyzes model overfitting by leveraging unsupervised clustering of the features extracted by CNNs. Our research demonstrates that overfitted models exhibit inadequate class discriminability within t
17#
發(fā)表于 2025-3-24 14:19:36 | 只看該作者
,A Meta-VAE for?Multi-component Industrial Systems Generation,sign options, providing a cheaper and faster alternative to the trial and failure approaches. Thanks to the flexibility they offer, Deep Generative Models are gaining popularity amongst Generative Design technologies. However, developing and evaluating these models can be challenging. A notable gap
18#
發(fā)表于 2025-3-24 16:20:06 | 只看該作者
,Analysis of?the?Computational Complexity of?Backpropagation and?Neuroevolution,based on stochastic gradient descent, where a network of neurons alter their weights based on an error signal passed back from the output. The second algorithm, called neuroevolution, is based on the genetic algorithm. In it, many weight sets are ranked based on how well the network solves the probl
19#
發(fā)表于 2025-3-24 20:25:51 | 只看該作者
,Indoor Obstacle Avoidance System Design and?Evaluation Using Deep Learning and?SLAM-Based Approacheates the fusion of 2D LiDAR-based Simultaneous Localization and Mapping (SLAM) with a Rapidly Exploring Random Trees (RRT) algorithm for effective path planning. Furthermore, we propose an innovative and pioneering approach for obstacle avoidance based on deep learning. The deep learning model is tr
20#
發(fā)表于 2025-3-25 00:25:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 02:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苍梧县| 恭城| 鄱阳县| 涿鹿县| 蕉岭县| 上杭县| 辰溪县| 枣庄市| 丽水市| 唐河县| 宜君县| 内丘县| 珲春市| 芦溪县| 南昌县| 嵊泗县| 南皮县| 陆川县| 上饶县| 博湖县| 苍梧县| 松江区| 辉南县| 新宾| 南充市| 安平县| 桑日县| 寿光市| 乳源| 穆棱市| 淮滨县| 内丘县| 绥化市| 彭泽县| 五常市| 富宁县| 宁陵县| 夏邑县| 内乡县| 华亭县| 左权县|