找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Astrophysics; Ivan Zelinka,Massimo Brescia,Dalya Baron Book 2021 The Editor(s) (if applicable) and The Author(s), under exclus

[復制鏈接]
樓主: deflate
41#
發(fā)表于 2025-3-28 14:52:14 | 只看該作者
42#
發(fā)表于 2025-3-28 20:28:35 | 只看該作者
Ensemble Classifiers for Pulsar Detection,e learning methods can be adopted. One challenge here though is that training such methods is hampered by the inherent imbalance in the available data since signals related to actual pulsars are relatively rare. In this chapter, we show that ensemble classification methods that specifically address
43#
發(fā)表于 2025-3-28 23:46:07 | 只看該作者
Periodic Astrometric Signal Recovery Through Convolutional Autoencoders,th-mass planets in temperate orbits around nearby sun-like stars. The TOLIMAN space telescope [.] is a low-cost, agile mission concept dedicated to narrow-angle astrometric monitoring of bright binary stars. In particular the mission will be optimised to search for habitable-zone planets around .?Ce
44#
發(fā)表于 2025-3-29 06:44:56 | 只看該作者
Comparison of Outlier Detection Methods on Astronomical Image Data, . objects. Unsupervised outlier detection algorithms may provide a viable solution. In this work we compare the performances of six methods: the Local Outlier Factor, Isolation Forest, k-means clustering, a measure of novelty, and both a normal and a convolutional autoencoder. These methods were ap
45#
發(fā)表于 2025-3-29 10:29:25 | 只看該作者
Anomaly Detection in Astrophysics: A Comparison Between Unsupervised Deep and Machine Learning on K beginning. The ongoing and future large and complex multi-messenger sky surveys impose a wide exploiting of robust and efficient automated methods to classify the observed structures and to detect and characterize peculiar and unexpected sources. We performed a preliminary experiment on KiDS DR4 da
46#
發(fā)表于 2025-3-29 15:08:15 | 只看該作者
47#
發(fā)表于 2025-3-29 17:54:50 | 只看該作者
Large Astronomical Time Series Pre-processing for Classification Using Artificial Neural Networks,ies (a.k.a. light curves containing usually flux or magnitude on one axis and Julian date on the other axis) are a bit more challenging to classify. As they comes from multiple observational devices and observatories (designed for e.g. variable stars detection, stellar system analysis or extra-solla
48#
發(fā)表于 2025-3-29 21:24:21 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 21:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
老河口市| 双流县| 柞水县| 达拉特旗| 广丰县| 六安市| 万宁市| 铁力市| 陇南市| 南投县| 筠连县| 交城县| 宁远县| 顺昌县| 铜山县| 南溪县| 嵩明县| 特克斯县| 开江县| 嘉义县| 黑龙江省| 东港市| 桦南县| 梨树县| 社旗县| 大姚县| 南乐县| 民县| 青州市| 凤台县| 南漳县| 武隆县| 安龙县| 凤山市| 金塔县| 通海县| 东乡县| 嫩江县| 石林| 马尔康县| 陇西县|