找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligence Science and Big Data Engineering. Big Data and Machine Learning; 9th International Co Zhen Cui,Jinshan Pan,Jian Yang Conferenc

[復制鏈接]
查看: 15790|回復: 66
樓主
發(fā)表于 2025-3-21 20:06:07 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Intelligence Science and Big Data Engineering. Big Data and Machine Learning
副標題9th International Co
編輯Zhen Cui,Jinshan Pan,Jian Yang
視頻videohttp://file.papertrans.cn/470/469278/469278.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Intelligence Science and Big Data Engineering. Big Data and Machine Learning; 9th International Co Zhen Cui,Jinshan Pan,Jian Yang Conferenc
描述.The two volumes LNCS 11935 and 11936 constitute the proceedings of the 9th International Conference on Intelligence Science and Big Data Engineering, IScIDE 2019, held in Nanjing, China, in October 2019...The 84 full papers presented were carefully reviewed and selected from 252 submissions.The papers are organized in two parts: visual data engineering; and big data and machine learning. They cover a large range of topics?including information theoretic and Bayesian approaches, probabilistic graphical models, big data analysis, neural networks and neuro-informatics, bioinformatics, computational biology and brain-computer interfaces, as well as advances in fundamental pattern recognition techniques relevant to image processing, computer vision and machine learning...?.
出版日期Conference proceedings 2019
關(guān)鍵詞artificial intelligence; computational linguistics; computer networks; computer vision; data mining; face
版次1
doihttps://doi.org/10.1007/978-3-030-36204-1
isbn_softcover978-3-030-36203-4
isbn_ebook978-3-030-36204-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Intelligence Science and Big Data Engineering. Big Data and Machine Learning影響因子(影響力)




書目名稱Intelligence Science and Big Data Engineering. Big Data and Machine Learning影響因子(影響力)學科排名




書目名稱Intelligence Science and Big Data Engineering. Big Data and Machine Learning網(wǎng)絡(luò)公開度




書目名稱Intelligence Science and Big Data Engineering. Big Data and Machine Learning網(wǎng)絡(luò)公開度學科排名




書目名稱Intelligence Science and Big Data Engineering. Big Data and Machine Learning被引頻次




書目名稱Intelligence Science and Big Data Engineering. Big Data and Machine Learning被引頻次學科排名




書目名稱Intelligence Science and Big Data Engineering. Big Data and Machine Learning年度引用




書目名稱Intelligence Science and Big Data Engineering. Big Data and Machine Learning年度引用學科排名




書目名稱Intelligence Science and Big Data Engineering. Big Data and Machine Learning讀者反饋




書目名稱Intelligence Science and Big Data Engineering. Big Data and Machine Learning讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:29:25 | 只看該作者
978-3-030-36203-4Springer Nature Switzerland AG 2019
板凳
發(fā)表于 2025-3-22 02:18:11 | 只看該作者
Intelligence Science and Big Data Engineering. Big Data and Machine Learning978-3-030-36204-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
地板
發(fā)表于 2025-3-22 07:59:55 | 只看該作者
https://doi.org/10.1007/978-3-030-36204-1artificial intelligence; computational linguistics; computer networks; computer vision; data mining; face
5#
發(fā)表于 2025-3-22 11:50:13 | 只看該作者
6#
發(fā)表于 2025-3-22 13:02:03 | 只看該作者
Computational Decomposition of Style for Controllable and Enhanced Style Transfer,thod, we derive a simple, effective computational module, which can be embedded into state-of-the-art style transfer algorithms. Experiments demonstrate the effectiveness of our method on not only painting style transfer but also other possible applications such as picture-to-sketch problems.
7#
發(fā)表于 2025-3-22 20:04:23 | 只看該作者
Laplacian Welsch Regularization for Robust Semi-supervised Dictionary Learning,atic (HQ) optimization algorithm to solve the model efficiently. Experimental results on various real-world datasets show that LWR performs robustly to outliers and achieves the top-level results when compared with the existing algorithms.
8#
發(fā)表于 2025-3-22 21:15:56 | 只看該作者
9#
發(fā)表于 2025-3-23 03:50:01 | 只看該作者
10#
發(fā)表于 2025-3-23 08:20:44 | 只看該作者
Mining Meta-association Rules for Different Types of Traffic Accidents,eta-rule set with universal applicability. Eventually, all traffic databases are excavated again with different thresholds to get association rules, and meta-rules are integrated into association rules to obtain the universal association rules in the form of a cell group. The proposed method is test
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 13:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
贵溪市| 格尔木市| 黎平县| 屏南县| 高雄县| 乌审旗| 阜宁县| 藁城市| 清涧县| 鲁甸县| 万载县| 浦江县| 格尔木市| 杨浦区| 大理市| 太仓市| 乌兰县| 天门市| 通化市| 达尔| 西平县| 佳木斯市| 锦州市| 金阳县| 馆陶县| 曲靖市| 调兵山市| 吉林省| 公安县| 会宁县| 神农架林区| 宣威市| 文山县| 墨玉县| 鹿邑县| 青铜峡市| 德格县| 五家渠市| 宝丰县| 潢川县| 浏阳市|