找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery; Boris Kovalerchuk,Kawa Nazemi,Ebad Banissi Book 2022

[復制鏈接]
樓主: Filament
41#
發(fā)表于 2025-3-28 17:34:26 | 只看該作者
42#
發(fā)表于 2025-3-28 20:52:17 | 只看該作者
43#
發(fā)表于 2025-3-29 01:54:14 | 只看該作者
Transparent Clustering with Cyclic Probabilistic Causal Modelsrototypes of clusters, formed by causal models, in accordance with the prototype theory of concepts, explored in cognitive science. In this work we describe the system of transparent analysis of such clasterization that bring the light to the interconnection between (1) set of objects with there cha
44#
發(fā)表于 2025-3-29 06:57:51 | 只看該作者
Visualization and Self-Organising Maps for the Characterisation of Bank Clientssk. We propose a visualization tool—VaBank—to ease the analysis of banking transactions over time and enhance the detection of the transactions’ topology and suspicious behaviours. To reduce the visualization space, we apply a time matrix that aggregates the transactions by time and amount values. A
45#
發(fā)表于 2025-3-29 08:00:19 | 只看該作者
Augmented Classical Self-organizing Map for Visualization of Discrete Data with Density Scalingan unsupervised analogue of the artificial neural network which preserves the topology of its input space. It efficiently summaries multidimensional data, but is difficult to visualize in a manner that is accessible to those trying to interpret it. The hSOM method improves upon the classical visuali
46#
發(fā)表于 2025-3-29 14:19:13 | 只看該作者
47#
發(fā)表于 2025-3-29 17:14:19 | 只看該作者
VisIRML: Visualization with an Interactive Information Retrieval and Machine Learning Classifierlearning (ML) classifier by labeling of sample articles facilitated via information retrieval (IR) query expansion—i.e. semi-supervised machine learning. The resulting classifier produces high quality labels better than comparable semi-supervised learning techniques. While multiple visualization app
48#
發(fā)表于 2025-3-29 19:48:38 | 只看該作者
Visual Analytics of Hierarchical and Network Timeseries Modelsnput, predicted, intermediate factors), model structure, model behavior, model sensitivity and model quality in one holistic application. We show examples ranging from simplistic prototypes of financial ratios, to nowcasting and economic forecasting, and massive transaction analysis. The approach is
49#
發(fā)表于 2025-3-30 01:41:55 | 只看該作者
50#
發(fā)表于 2025-3-30 06:15:35 | 只看該作者
Context-Aware Diagnosis in Smart Manufacturing: TAOISM, An Industry 4.0-Ready Visual Analytics Models, and dependencies. Consequently, complexity also rises with the vast amount of data. While acquiring data from all the involved systems and protocols remains challenging, the assessment and reasoning of information are complex for tasks like fault detection and diagnosis. Furthermore, through the
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南城县| 遂平县| 徐汇区| 贞丰县| 阳高县| 呼伦贝尔市| 兴化市| 淮安市| 镇沅| 瓮安县| 田林县| 鄂伦春自治旗| 南郑县| 融水| 舞阳县| 珲春市| 吴旗县| 长乐市| 丹寨县| 新竹县| 太和县| 电白县| 乌审旗| 和平县| 侯马市| 象山县| 广州市| 西吉县| 交口县| 龙游县| 瑞丽市| 应用必备| 冷水江市| 图片| 汪清县| 长岭县| 镇江市| 鲁山县| 当雄县| 沙田区| 香港 |