找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integralgeometrie; Rolf Schneider,Wolfgang Weil Textbook 1992 B. G. Teubner Stuttgart 1992 Ergebnis.Handel.Integralgeometrie.Ma?.Statistik

[復制鏈接]
樓主: 新石器時代
11#
發(fā)表于 2025-3-23 12:43:12 | 只看該作者
Anwendungen in der Stochastischen Geometrie,ber zuf?llig bewegte geometrische Objekte zusammengestellt. Zun?chst werden geometrische Wahrscheinlichkeiten behandelt, wie sie etwa beim in der Einleitung angesprochenen Buffonschen Nadelproblem und beim Bertrandschen Paradoxon auftreten. Insbesondere werden wir verschiedene Typen zuf?lliger .-dim
12#
發(fā)表于 2025-3-23 17:19:02 | 只看該作者
13#
發(fā)表于 2025-3-23 18:39:19 | 只看該作者
14#
發(fā)表于 2025-3-24 00:52:26 | 只看該作者
15#
發(fā)表于 2025-3-24 04:48:56 | 只看該作者
https://doi.org/10.1007/978-3-322-84824-6Ergebnis; Handel; Integralgeometrie; Ma?; Statistik; Stereologie; Wahrscheinlichkeit
16#
發(fā)表于 2025-3-24 10:10:37 | 只看該作者
,Invariante Ma?e,Das Lebesgue-Ma? auf dem . ?ndert sich nicht bei Translationen, also bei den Abbildungen, die durch die Gruppenverknüpfung der additiven Gruppe . definiert werden. Es ist auch invariant unter Drehungen und daher unter allen Bewegungen des .. Damit ist das Lebesgue-Ma? in zweierlei Hinsicht ein wichtiges Beispiel für einen allgemeinen Sachverhalt.
17#
發(fā)表于 2025-3-24 13:13:00 | 只看該作者
Die kinematische Hauptformel,In diesem Kapitel werden die wichtigsten integralgeometrischen Formeln, die kinematische Hauptformel und die Crofton-Formel, behandelt. Wir beweisen sie in einer allgemeinen Fassung für Krümmungsma?e und die Mengen des Konvexringes.
18#
發(fā)表于 2025-3-24 16:16:19 | 只看該作者
19#
發(fā)表于 2025-3-24 19:06:24 | 只看該作者
20#
發(fā)表于 2025-3-25 02:56:58 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 10:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
图片| 张家口市| 怀柔区| 武川县| 凌云县| 庐江县| 怀来县| 盘山县| 无为县| 肃南| 新宁县| 神农架林区| 丽江市| 延庆县| 湖州市| 自贡市| 高雄市| 禹城市| 大竹县| 兰州市| 广宗县| 涟源市| 阳高县| 辉县市| 巴南区| 思南县| 信丰县| 上杭县| 祁阳县| 蒙城县| 英德市| 如东县| 饶阳县| 舒兰市| 北海市| 正宁县| 丹凤县| 安泽县| 墨脱县| 兴义市| 娱乐|