找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Transforms in Science and Engineering; Kurt Bernardo Wolf Book 1979 Springer Science+Business Media New York 1979 Canon.Finite.La

[復(fù)制鏈接]
樓主: 無力向前
11#
發(fā)表于 2025-3-23 11:17:36 | 只看該作者
12#
發(fā)表于 2025-3-23 17:08:09 | 只看該作者
13#
發(fā)表于 2025-3-23 18:56:54 | 只看該作者
Function Vector Spaces and Fourier Seriespaces. Section 4.1 is meant to provide a general picture of the location and depth of these extensions, introducing an infinite orthonormal set of functions (2.)./. exp(inx), for . 0, ± 1, ± 2, …, periodic in . with period .. A large class of functions can be expanded in a series, called Fourier ser
14#
發(fā)表于 2025-3-24 01:44:29 | 只看該作者
15#
發(fā)表于 2025-3-24 04:20:03 | 只看該作者
Normal Mode Expansion and Bessel Seriese region enclosed by the boundaries. This is developed in Section 6.1 for rectangular boundaries and in Sections 6.2 and 6.3 for circular, sectorial, and annular boundaries in the plane. These are a few of the systems which appear in physics and engineering, where a great variety of operators and bo
16#
發(fā)表于 2025-3-24 09:02:09 | 只看該作者
17#
發(fā)表于 2025-3-24 12:33:42 | 只看該作者
Integral Transforms Related to the Fourier Transformtify continuous partial-wave analyses in terms of functions other than the oscillating exponential ones. Section 8.1 presents the bilateral and the more common unilateral Laplace transform where the expanding functions are the decreasing exponential functions exp(.). In Section 8.2 we expand functio
18#
發(fā)表于 2025-3-24 15:33:01 | 只看該作者
19#
發(fā)表于 2025-3-24 19:11:40 | 只看該作者
20#
發(fā)表于 2025-3-24 23:56:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 18:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
含山县| 陆丰市| 班戈县| 盘锦市| 高要市| 徐闻县| 通许县| 全州县| 堆龙德庆县| 开平市| 尉氏县| 天津市| 秦皇岛市| 淮滨县| 潼关县| 定安县| 临朐县| 高安市| 黑山县| 呈贡县| 揭阳市| 林甸县| 买车| 监利县| 津市市| 鄱阳县| 休宁县| 黄大仙区| 永福县| 体育| 绩溪县| 迁安市| 团风县| 平凉市| 托克逊县| 巫溪县| 金坛市| 平遥县| 顺昌县| 梁河县| 淮南市|