找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Transforms and their Applications; B. Davies Book 19852nd edition Springer Science+Business Media New York 1985 Applications.Inte

[復(fù)制鏈接]
樓主: Hazardous
21#
發(fā)表于 2025-3-25 07:16:13 | 只看該作者
22#
發(fā)表于 2025-3-25 09:11:37 | 只看該作者
Definitions and Elementary PropertiesLet f(t) be an arbitrary function; then the (exponential) Fourier transform of f(t) is the function defined by the integral.for those values of ω for which the integral exists. We shall usually refer to (1) as the Fourier transform, omitting any reference to the term exponential.
23#
發(fā)表于 2025-3-25 14:46:40 | 只看該作者
Generalized FunctionsThe subject of generalized functions is an enormous one, and we refer the reader to one of the excellent modern books. for a full account of the theory. We will sketch in this section some of the more elementary aspects of the theory, because the use of generalized functions adds considerably to the power of the Fourier transform as a tool.
24#
發(fā)表于 2025-3-25 16:58:59 | 只看該作者
25#
發(fā)表于 2025-3-25 20:29:55 | 只看該作者
26#
發(fā)表于 2025-3-26 02:39:30 | 只看該作者
27#
發(fā)表于 2025-3-26 05:35:09 | 只看該作者
Integrals Involving a ParameterConsider the function g(γ) defined by..
28#
發(fā)表于 2025-3-26 12:25:39 | 只看該作者
29#
發(fā)表于 2025-3-26 14:37:14 | 只看該作者
Dual Integral EquationsTo motivate this section, we first solve a classical problem of electrostatics. We wish to find the electrostatic potential φ created by an isolated thin conducting disc of radius a, whose potential is V.
30#
發(fā)表于 2025-3-26 18:03:25 | 只看該作者
Integral Transforms Generated by Green’s FunctionsIn this section we will investigate (in a purely formal manner) some properties of the self-adjoint differential operator [see (10.15)].where p(x) and q(x) are given functions on the interval a ≤ x ≤ b, and the functions u(x) under consideration all satisfy homogeneous boundary conditions of the type [see (10.2)]
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 05:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
砚山县| 岳普湖县| 封开县| 龙里县| 拉孜县| 莱阳市| 岑溪市| 福泉市| 松潘县| 休宁县| 伽师县| 阜阳市| 华容县| 景谷| 湖口县| 芒康县| 平陆县| 松桃| 晋江市| 塘沽区| 上虞市| 陆河县| 会宁县| 嫩江县| 平江县| 平原县| 壤塘县| 两当县| 行唐县| 栾城县| 永吉县| 怀宁县| 华安县| 石城县| 波密县| 庆阳市| 元朗区| 楚雄市| 独山县| 乐安县| 阳谷县|