找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Transforms and Their Applications; B. Davies Book 19781st edition Springer Science+Business Media New York 1978 Applications.Inte

[復(fù)制鏈接]
樓主: Inspection
21#
發(fā)表于 2025-3-25 05:22:12 | 只看該作者
Ordinary Differential EquationsLinear differential equations with constant coefficients are an important area of application of the Laplace transform. As a prelude to the discussion of such problems we discuss first two particularly simple examples, since the connection with the classical methods of solution is readily apparent in these cases.
22#
發(fā)表于 2025-3-25 10:32:31 | 只看該作者
Partial Differential EquationsAs an example to show how the Laplace transform may be applied to the solution of partial differential equations, we consider the diffusion of heat in an isotropic solid body.
23#
發(fā)表于 2025-3-25 12:36:28 | 只看該作者
The Inversion IntegralAnalytic information about the inversion integral is usually obtained by “closing the contour”, as in Section 2.4 for rational functions.
24#
發(fā)表于 2025-3-25 16:54:12 | 只看該作者
25#
發(fā)表于 2025-3-25 23:31:44 | 只看該作者
26#
發(fā)表于 2025-3-26 01:08:32 | 只看該作者
27#
發(fā)表于 2025-3-26 05:23:24 | 只看該作者
28#
發(fā)表于 2025-3-26 09:29:30 | 只看該作者
Dual Integral EquationsTo motivate this section, we first solve a classical problem of electrostatics. We wish to find the electrostatic potential φ created by an isolated thin conducting disc of radius a, whose potential is V.
29#
發(fā)表于 2025-3-26 15:37:26 | 只看該作者
30#
發(fā)表于 2025-3-26 17:38:43 | 只看該作者
Methods Based on Cauchy IntegralsThe major difficulty in using the Wiener-Hopf technique is the problem of constructing a suitable factorization. We consider here a method based on contour integration which leads by natural extensions to the use of Cauchy integrals in the solution of mixed boundary-value problems.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 03:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹤庆县| 横山县| 金乡县| 仁怀市| 嘉峪关市| 贵州省| 于田县| 桃园县| 庄浪县| 汉源县| 田东县| 麻栗坡县| 米易县| 临泽县| 什邡市| 乡宁县| 八宿县| 壤塘县| 长垣县| 香河县| 宜川县| 涪陵区| 芦溪县| 印江| 淅川县| 阿合奇县| 高平市| 万山特区| 苏尼特右旗| 洪江市| 五寨县| 崇信县| 奉贤区| 洱源县| 潜山县| 噶尔县| 嘉峪关市| 镇安县| 宜都市| 石柱| 太仆寺旗|