找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Points on Algebraic Varieties; An Introduction to D Pietro Corvaja Book 2016 Springer Science+Business Media Singapore 2016 and Hi

[復(fù)制鏈接]
樓主: iniquity
11#
發(fā)表于 2025-3-23 12:54:16 | 只看該作者
Pietro CorvajaIntroduces problems in Diophantine geometry and their recent results.Investigates the distribution of integral points on algebraic varieties.Discusses about the Siegel’s finiteness theorem for integra
12#
發(fā)表于 2025-3-23 15:12:38 | 只看該作者
HBA Lecture Notes in Mathematicshttp://image.papertrans.cn/i/image/468337.jpg
13#
發(fā)表于 2025-3-23 18:33:58 | 只看該作者
Integral points on algebraic varieties,Our main concern will be the investigation of the solutions in integers to systems of algebraic equations.
14#
發(fā)表于 2025-3-24 02:00:18 | 只看該作者
The theorems of Thue and Siegel,One of the first finiteness results on Diophantine equations was proved by Axel Thue in 1909 [58]. It constitutes the starting point of the modern theories of Diophantine equations and Diophantine approximation.
15#
發(fā)表于 2025-3-24 04:36:36 | 只看該作者
16#
發(fā)表于 2025-3-24 09:18:03 | 只看該作者
17#
發(fā)表于 2025-3-24 12:30:14 | 只看該作者
https://doi.org/10.1007/978-981-10-2648-5Diophantine approximation; Thue‘s equation; Siegel‘s Theorem; Hyperelliptic curves; Universal Hilbert Se
18#
發(fā)表于 2025-3-24 17:29:14 | 只看該作者
Diophantine approximation,nstance in [50], [51], [8]. We are primarily interested in the rational approximation to algebraic numbers; more precisely, we are interested in estimating the accuracy in the approximation to such numbers with respect to the denominator of the approximant. The following theorem gives the best possible result for an arbitrary irrational number.
19#
發(fā)表于 2025-3-24 19:29:19 | 只看該作者
20#
發(fā)表于 2025-3-25 01:52:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 17:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉林省| 崇左市| 宜黄县| 福安市| 中宁县| 玉屏| 大兴区| 剑川县| 竹北市| 台东市| 屏东市| 南通市| 科尔| 霍州市| 霍林郭勒市| 广丰县| 普兰县| 鄂伦春自治旗| 孟津县| 武山县| 七台河市| 翁牛特旗| 增城市| 东源县| 壤塘县| 湟中县| 庆安县| 叙永县| 剑河县| 普定县| 浪卡子县| 永平县| 通城县| 鹤庆县| 中山市| 达州市| 盐亭县| 美姑县| 枣阳市| 巫溪县| 宁陵县|