找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Operators in Non-Standard Function Spaces; Volume 1: Variable E Vakhtang Kokilashvili,Alexander Meskhi,Stefan Samk Book 2016 Sprin

[復制鏈接]
樓主: nourish
31#
發(fā)表于 2025-3-26 22:31:34 | 只看該作者
32#
發(fā)表于 2025-3-27 03:00:12 | 只看該作者
Two-weight Inequalities for Fractional Maximal Functions,
33#
發(fā)表于 2025-3-27 06:12:25 | 只看該作者
34#
發(fā)表于 2025-3-27 11:13:49 | 只看該作者
35#
發(fā)表于 2025-3-27 16:08:47 | 只看該作者
36#
發(fā)表于 2025-3-27 19:16:20 | 只看該作者
,More on Hypersingular Integrals and Embeddings into H?lder Spaces,g space is a quasimetric measure space. The proofs are based on some pointwise estimations of differences of Sobolev functions. These estimates lead also to embeddings of variable exponent Haj?asz–Sobolev spaces into variable order H?lder spaces.
37#
發(fā)表于 2025-3-28 01:24:13 | 只看該作者
More on Compactness,rem for integral operators. We give it in a general context of Banach Function Spaces (BFS) in the well-known sense (see Bennett and Sharpley [27])and recall that ...(Ω) is a BFS, as verified in Edmunds, Lang, and Nekvinda [75].
38#
發(fā)表于 2025-3-28 04:47:28 | 只看該作者
Applications to Singular Integral Equations,equations (10.1) with piecewise continuous coefficients. As is well known to researches in this field, to investigate such equations in a specific function space, it is important to know precise necessary and sufficient conditions for a weighted singular operator to be bounded in that space.
39#
發(fā)表于 2025-3-28 09:52:12 | 只看該作者
Hardy-type Operators in Variable Exponent Lebesgue Spaces,In this chapter we consider the Hardy-type operators . with variable exponents, in variable exponent Lebesgue spaces.
40#
發(fā)表于 2025-3-28 13:37:52 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 00:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
无为县| 田阳县| 连江县| 宿迁市| 丹凤县| 海林市| 长宁县| 高清| 新安县| 巍山| 菏泽市| 上林县| 乌鲁木齐市| 克拉玛依市| 临沂市| 诸城市| 阿拉善左旗| 金塔县| 个旧市| 东安县| 宜章县| 利津县| 惠来县| 武夷山市| 肃宁县| 新化县| 霍城县| 武平县| 剑川县| 长葛市| 石台县| 铜川市| 增城市| 锡林郭勒盟| 广德县| 会同县| 马山县| 敦煌市| 铁力市| 奉化市| 宣威市|