找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Operators in Non-Standard Function Spaces; Volume 1: Variable E Vakhtang Kokilashvili,Alexander Meskhi,Stefan Samk Book 2016 Sprin

[復(fù)制鏈接]
樓主: nourish
31#
發(fā)表于 2025-3-26 22:31:34 | 只看該作者
32#
發(fā)表于 2025-3-27 03:00:12 | 只看該作者
Two-weight Inequalities for Fractional Maximal Functions,
33#
發(fā)表于 2025-3-27 06:12:25 | 只看該作者
34#
發(fā)表于 2025-3-27 11:13:49 | 只看該作者
35#
發(fā)表于 2025-3-27 16:08:47 | 只看該作者
36#
發(fā)表于 2025-3-27 19:16:20 | 只看該作者
,More on Hypersingular Integrals and Embeddings into H?lder Spaces,g space is a quasimetric measure space. The proofs are based on some pointwise estimations of differences of Sobolev functions. These estimates lead also to embeddings of variable exponent Haj?asz–Sobolev spaces into variable order H?lder spaces.
37#
發(fā)表于 2025-3-28 01:24:13 | 只看該作者
More on Compactness,rem for integral operators. We give it in a general context of Banach Function Spaces (BFS) in the well-known sense (see Bennett and Sharpley [27])and recall that ...(Ω) is a BFS, as verified in Edmunds, Lang, and Nekvinda [75].
38#
發(fā)表于 2025-3-28 04:47:28 | 只看該作者
Applications to Singular Integral Equations,equations (10.1) with piecewise continuous coefficients. As is well known to researches in this field, to investigate such equations in a specific function space, it is important to know precise necessary and sufficient conditions for a weighted singular operator to be bounded in that space.
39#
發(fā)表于 2025-3-28 09:52:12 | 只看該作者
Hardy-type Operators in Variable Exponent Lebesgue Spaces,In this chapter we consider the Hardy-type operators . with variable exponents, in variable exponent Lebesgue spaces.
40#
發(fā)表于 2025-3-28 13:37:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 02:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新化县| 渑池县| 龙山县| 上饶县| 日喀则市| 鹤岗市| 大洼县| 慈利县| 大方县| 即墨市| 南和县| 商洛市| 仙居县| 峨眉山市| 建瓯市| 阿拉善右旗| 祁门县| 南皮县| 香格里拉县| 聂荣县| 柘荣县| 钟祥市| 葵青区| 砚山县| 阜宁县| 平南县| 广平县| 綦江县| 沙田区| 合作市| 安阳县| 舟曲县| 林周县| 贡觉县| 峨山| 正镶白旗| 西昌市| 加查县| 潢川县| 西畴县| 陆良县|