找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Methods in Science and Engineering; Computational and An Christian Constanda,Paul J. Harris Book 2011 Springer Science+Business Me

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 17:09:13 | 只看該作者
42#
發(fā)表于 2025-3-28 19:37:40 | 只看該作者
43#
發(fā)表于 2025-3-29 01:03:17 | 只看該作者
44#
發(fā)表于 2025-3-29 06:42:02 | 只看該作者
Thermoelastic Plates with Arc-Shaped Cracks,al properties and solution of the theory proposed in (Schiavone and Tait .), when the plate is weakened by an arc-shaped crack. The corresponding results in the absence of the temperature factor can be found in (Chudinovich and Constanda .), (Chudinovich and Constanda .), and (Chudinovich and Constanda .).
45#
發(fā)表于 2025-3-29 10:01:32 | 只看該作者
46#
發(fā)表于 2025-3-29 13:11:16 | 只看該作者
,Analysis of Some Localized Boundary–Domain Integral Equations for Transmission Problems with Variab main results established in the paper are the LBDIE equivalence to the original transmission problems and the invertibility of the corresponding localized boundary-domain integral operators in corresponding Sobolev spaces function spaces.
47#
發(fā)表于 2025-3-29 18:49:16 | 只看該作者
,Analysis of Segregated Boundary–Domain Integral Equations for Mixed Variable-Coefficient BVPs in Exhe invertibility of the corresponding boundary–domain integral operators are proved in weighted Sobolev spaces suitable for exterior domains. This extends the results obtained by the authors for interior domains in non-weighted Sobolev spaces.
48#
發(fā)表于 2025-3-29 22:31:20 | 只看該作者
49#
發(fā)表于 2025-3-30 02:18:15 | 只看該作者
diverse group of well-established scientists Applicable to a.An enormous array of problems encountered by scientists and engineers?are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. A
50#
發(fā)表于 2025-3-30 04:47:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
都江堰市| 浮梁县| 华蓥市| 长寿区| 奇台县| 义马市| 浦城县| 古田县| 沂水县| 庄浪县| 西平县| 斗六市| 鹤岗市| 仪陇县| 宁陕县| 泽普县| 紫阳县| 马尔康县| 平凉市| 祁阳县| 红河县| 襄垣县| 武功县| 涿鹿县| 胶南市| 九龙坡区| 永年县| 天台县| 社旗县| 远安县| 普安县| 云林县| 新营市| 西乌| 贵德县| 芷江| 高雄市| 乌鲁木齐市| 山西省| 曲周县| 巩留县|