找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Methods in Science and Engineering; Analytic Treatment a Christian Constanda,Paul Harris Book 2019 Springer Nature Switzerland AG

[復(fù)制鏈接]
樓主: 你太謙虛
21#
發(fā)表于 2025-3-25 05:35:24 | 只看該作者
22#
發(fā)表于 2025-3-25 10:19:35 | 只看該作者
ng pathologists not found in other more general volumes of gynecologic pathology. This important work focuses almost entirely on strategies for accurate diagnosis and histologic subclassification, and the clinical correlates of these diagnosis. It provides evolving guidelines for detecting early ova
23#
發(fā)表于 2025-3-25 12:40:59 | 只看該作者
24#
發(fā)表于 2025-3-25 18:31:47 | 只看該作者
25#
發(fā)表于 2025-3-25 20:45:04 | 只看該作者
Singularity Subtraction for Nonlinear Weakly Singular Integral Equations of the Second Kind,is generalized to the case of a nonlinear integral equation of the same kind. Convergence of the sequence of approximate solutions to the exact one is proved under mild standard hypotheses on the nonlinear factor, and on the sequence of quadrature rules used to build an approximate equation. A numer
26#
發(fā)表于 2025-3-26 01:23:41 | 只看該作者
27#
發(fā)表于 2025-3-26 08:16:26 | 只看該作者
28#
發(fā)表于 2025-3-26 08:50:26 | 只看該作者
29#
發(fā)表于 2025-3-26 14:22:35 | 只看該作者
Two-Operator Boundary-Domain Integral Equations for Variable Coefficient Dirichlet Problem in 2D,e parametrix (Levi function) and applying the two-operator approach, this problem is reduced to two systems of boundary-domain integral equations (BDIEs). Although the theory of BDIEs in 3D is well developed, the BDIEs in 2D need a special consideration due to their different equivalence properties.
30#
發(fā)表于 2025-3-26 19:28:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 00:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马边| 桐庐县| 承德县| 靖边县| 沙河市| 寻甸| 包头市| 边坝县| 濉溪县| 天长市| 涞源县| 漯河市| 宁武县| 黄冈市| 巴楚县| 桐庐县| 嘉禾县| 莎车县| 班玛县| 乌兰察布市| 平南县| 浦县| 仁布县| 镇康县| 甘孜| 兰州市| 临城县| 新疆| 高碑店市| 永州市| 安丘市| 上犹县| 安阳市| 西丰县| 茶陵县| 益阳市| 朝阳区| 奉节县| 徐州市| 张北县| 蒙山县|