找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Methods in Science and Engineering; Analytic Treatment a Christian Constanda,Paul Harris Book 2019 Springer Nature Switzerland AG

[復制鏈接]
樓主: 你太謙虛
21#
發(fā)表于 2025-3-25 05:35:24 | 只看該作者
22#
發(fā)表于 2025-3-25 10:19:35 | 只看該作者
ng pathologists not found in other more general volumes of gynecologic pathology. This important work focuses almost entirely on strategies for accurate diagnosis and histologic subclassification, and the clinical correlates of these diagnosis. It provides evolving guidelines for detecting early ova
23#
發(fā)表于 2025-3-25 12:40:59 | 只看該作者
24#
發(fā)表于 2025-3-25 18:31:47 | 只看該作者
25#
發(fā)表于 2025-3-25 20:45:04 | 只看該作者
Singularity Subtraction for Nonlinear Weakly Singular Integral Equations of the Second Kind,is generalized to the case of a nonlinear integral equation of the same kind. Convergence of the sequence of approximate solutions to the exact one is proved under mild standard hypotheses on the nonlinear factor, and on the sequence of quadrature rules used to build an approximate equation. A numer
26#
發(fā)表于 2025-3-26 01:23:41 | 只看該作者
27#
發(fā)表于 2025-3-26 08:16:26 | 只看該作者
28#
發(fā)表于 2025-3-26 08:50:26 | 只看該作者
29#
發(fā)表于 2025-3-26 14:22:35 | 只看該作者
Two-Operator Boundary-Domain Integral Equations for Variable Coefficient Dirichlet Problem in 2D,e parametrix (Levi function) and applying the two-operator approach, this problem is reduced to two systems of boundary-domain integral equations (BDIEs). Although the theory of BDIEs in 3D is well developed, the BDIEs in 2D need a special consideration due to their different equivalence properties.
30#
發(fā)表于 2025-3-26 19:28:44 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 03:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
涿鹿县| 越西县| 保康县| 衢州市| 双鸭山市| 镇赉县| 武定县| 石屏县| 栖霞市| 高清| 荣成市| 财经| 宿州市| 喜德县| 新疆| 德庆县| 睢宁县| 新平| 兴城市| 三穗县| 永吉县| 孟州市| 墨脱县| 浠水县| 延川县| 通辽市| 湘乡市| 迭部县| 绥棱县| 通山县| 许昌市| 冕宁县| 巴东县| 芜湖市| 连云港市| 临湘市| 永定县| 遂溪县| 三穗县| 临湘市| 山西省|