找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: Integral Methods in Science and Engineering; Theoretical and Prac C. Constanda,Z. Nashed,D. Rollins Book 2006 Birkh?user Boston 2006 Bounda

[復(fù)制鏈接]
樓主: intern
61#
發(fā)表于 2025-4-1 05:15:14 | 只看該作者
http://image.papertrans.cn/i/image/468319.jpg
62#
發(fā)表于 2025-4-1 06:42:20 | 只看該作者
63#
發(fā)表于 2025-4-1 11:56:38 | 只看該作者
Zonal, Spectral Solutions for the Navier-Stokes Layer and Their Aerodynamical Applications,This hybrid analytic-numerical method is more accurate and needs less computer time than full-numerical methods because it needs no grid generation, the derivatives of all parameters can be easily and exactly computed, and the NSL’s PDEs are satisfied exactly (at an arbitrary number . of chosen points).
64#
發(fā)表于 2025-4-1 17:07:24 | 只看該作者
https://doi.org/10.1007/0-8176-4450-4Boundary value problem; Integral equation; Numerical integration; Operator; Potential; Simulation; Wavelet
65#
發(fā)表于 2025-4-1 19:30:36 | 只看該作者
Book 2006 differential, integral, and integro-differential equations. An essential step in such investigations is the solution of these types of equations, which sometimes can be performed analytically, while at other times only numerically. This edited, self-contained volume presents a series of state-of-th
66#
發(fā)表于 2025-4-2 00:32:55 | 只看該作者
A Weakly Singular Boundary Integral Formulation of the External Helmholtz Problem Valid for All Wavtroducing any volume integrals. This new formulation allows a much wider class of basis functions to be considered. The numerical results show that the higher-order piecewise polynomials considered here give considerably more accurate results.
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
于田县| 荣昌县| 白朗县| 怀柔区| 广平县| 五家渠市| 娄烦县| 闻喜县| 江口县| 齐河县| 二连浩特市| 同江市| 大庆市| 玉田县| 新龙县| 永福县| 黄龙县| 西丰县| 剑阁县| 平乡县| 洞头县| 烟台市| 台中市| 岢岚县| 永定县| 珲春市| 瓮安县| 石楼县| 尉犁县| 门头沟区| 中阳县| 桦南县| 武邑县| 瑞安市| 永丰县| 孟州市| 晋城| 永年县| 延安市| 左贡县| 郴州市|