找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integer Programming and Combinatorial Optimization; 14th International C Friedrich Eisenbrand,F. Bruce Shepherd Conference proceedings 2010

[復(fù)制鏈接]
樓主: industrious
31#
發(fā)表于 2025-3-26 22:53:06 | 只看該作者
32#
發(fā)表于 2025-3-27 04:02:53 | 只看該作者
Eigenvalue Techniques for Convex Objective, Nonconvex Optimization Problems, that even if we can efficiently optimize over the convex hull of the feasible region, the optimum will likely lie in the interior of a high dimensional face, “far away” from any feasible point, yielding weak bounds. We present theory and implementation for an approach that relies on (a) the S-lemma
33#
發(fā)表于 2025-3-27 07:43:14 | 只看該作者
Restricted ,-Matchings in Degree-Bounded Graphs,ch the degree of each node is at most .?+?1, find a maximum .-matching containing no member of a list . of forbidden .. and .. subgraphs. An analogous problem for bipartite graphs without degree bounds was solved by Makai [15], while the special case of finding a maximum square-free 2-matching in a
34#
發(fā)表于 2025-3-27 10:40:05 | 只看該作者
Zero-Coefficient Cuts,here .?≥?0 is the vector of non-basic variables and .?≥?0. For a point . of the linear relaxation, we call ...?≥?1 a . wrt. . if ., since this implies ..?=?0 when .. We consider the following problem: Given a point . of the linear relaxation, find a basis, and a zero-coefficient cut wrt. . derived f
35#
發(fā)表于 2025-3-27 15:12:24 | 只看該作者
Prize-Collecting Steiner Network Problems,bgraph . of . that contains .. edge-disjoint paths for all .,.?∈?.. In . problems we do not need to satisfy all requirements, but are given a . for violating the connectivity requirements, and the goal is to find a subgraph . that minimizes the cost plus the penalty. The case when ..?∈?{0,1} is the
36#
發(fā)表于 2025-3-27 21:35:41 | 只看該作者
37#
發(fā)表于 2025-3-27 22:35:04 | 只看該作者
38#
發(fā)表于 2025-3-28 03:13:33 | 只看該作者
39#
發(fā)表于 2025-3-28 08:14:09 | 只看該作者
40#
發(fā)表于 2025-3-28 13:09:44 | 只看該作者
Symmetry Matters for the Sizes of Extended Formulations, variables and constraints that is bounded subexponentially in?.. Here, symmetric means that the formulation remains invariant under all permutations of the nodes of?... It was also conjectured in?[17] that “asymmetry does not help much,” but no corresponding result for general extended formulations
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 23:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
舒兰市| 蓝山县| 木兰县| 广元市| 三都| 温州市| 定西市| 东丽区| 剑川县| 广丰县| 喀喇| 错那县| 栾川县| 浦江县| 东港市| 美姑县| 巫山县| 大竹县| 晋宁县| 临澧县| 安福县| 洞头县| 丰顺县| 泽库县| 曲松县| 南昌县| 曲沃县| 台北市| 咸丰县| 江门市| 通山县| 肥西县| 新邵县| 海宁市| 镇安县| 巴塘县| 上林县| 信宜市| 攀枝花市| 卓尼县| 晋城|