找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integer Programming and Combinatorial Optimization; 16th International C Michel Goemans,José Correa Conference proceedings 2013 Springer-Ve

[復(fù)制鏈接]
樓主: 貪污
11#
發(fā)表于 2025-3-23 10:30:21 | 只看該作者
12#
發(fā)表于 2025-3-23 15:08:22 | 只看該作者
13#
發(fā)表于 2025-3-23 20:28:42 | 只看該作者
14#
發(fā)表于 2025-3-24 02:16:39 | 只看該作者
15#
發(fā)表于 2025-3-24 03:47:11 | 只看該作者
16#
發(fā)表于 2025-3-24 09:52:56 | 只看該作者
Blocking Optimal Arborescences, In this paper we show that the following special case is solvable in polynomial time: given a digraph .?=?(.,.) with a designated root node .?∈?. and arc-costs .:.?→??, find a minimum cardinality subset . of the arc set . such that . intersects every minimum .-cost .-arborescence. The algorithm we
17#
發(fā)表于 2025-3-24 12:01:01 | 只看該作者
18#
發(fā)表于 2025-3-24 17:44:08 | 只看該作者
A Complexity and Approximability Study of the Bilevel Knapsack Problem, weight and profit coefficients in the knapsack problem are encoded in unary, then two of the bilevel variants are solvable in polynomial time, whereas the third is NP-complete. Furthermore we design a polynomial time approximation scheme for this third variant, whereas the other two variants cannot
19#
發(fā)表于 2025-3-24 22:53:22 | 只看該作者
Matroid and Knapsack Center Problems,vertex to its closest center is minimized. In this paper, we consider two important generalizations of .-center, the matroid center problem and the knapsack center problem. Both problems are motivated by recent content distribution network applications. Our contributions can be summarized as follows
20#
發(fā)表于 2025-3-25 00:04:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永州市| 大理市| 始兴县| 岑巩县| 九寨沟县| 颍上县| 西安市| 察隅县| 黄冈市| 公主岭市| 镶黄旗| 徐水县| 乌鲁木齐县| 噶尔县| 盐津县| 湾仔区| 苍梧县| 满洲里市| 布尔津县| 得荣县| 沭阳县| 通渭县| 江陵县| 乌鲁木齐市| 盐亭县| 利辛县| 大姚县| 赣榆县| 水富县| 黄龙县| 三原县| 遵化市| 沈丘县| 洛隆县| 财经| 霍林郭勒市| 白城市| 宜州市| 礼泉县| 余庆县| 峨边|