找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Inside Interesting Integrals; A Collection of Snea Paul J. Nahin Textbook 2020Latest edition Springer Nature Switzerland AG 2020 Differenti

[復(fù)制鏈接]
查看: 15084|回復(fù): 50
樓主
發(fā)表于 2025-3-21 19:24:50 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Inside Interesting Integrals
副標(biāo)題A Collection of Snea
編輯Paul J. Nahin
視頻videohttp://file.papertrans.cn/468/467782/467782.mp4
概述New edition with 25 added challenge problems and solutions and 25 new worked examples.A "recipe book" with many valuable little-known integration techniques.Written with an accessible and easy-to-foll
叢書名稱Undergraduate Lecture Notes in Physics
圖書封面Titlebook: Inside Interesting Integrals; A Collection of Snea Paul J. Nahin Textbook 2020Latest edition Springer Nature Switzerland AG 2020 Differenti
描述.What’s the point of calculating definite integrals since you can’t possibly do them all?.What makes doing the specific integrals in this book of value aren’t the specific answers we’ll obtain, but rather the methods we’ll use in obtaining those answers; methods you can use for evaluating the integrals you will encounter in the future..This book, now in its second edition, is written in a light-hearted manner for students who have completed the first year of college or high school AP calculus and have just a bit of exposure to the concept of a differential equation. Every result is fully derived. If you are fascinated by definite integrals, then this is a book for you. New material in the second edition includes 25 new challenge problems and solutions, 25 new worked examples, simplified derivations, and additional historical discussion.?.
出版日期Textbook 2020Latest edition
關(guān)鍵詞Differentiation Under the Integral; Dirichlet Integral; Euler Log-sine Integral; Feynman Integral; Integ
版次2
doihttps://doi.org/10.1007/978-3-030-43788-6
isbn_softcover978-3-030-43787-9
isbn_ebook978-3-030-43788-6Series ISSN 2192-4791 Series E-ISSN 2192-4805
issn_series 2192-4791
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Inside Interesting Integrals影響因子(影響力)




書目名稱Inside Interesting Integrals影響因子(影響力)學(xué)科排名




書目名稱Inside Interesting Integrals網(wǎng)絡(luò)公開度




書目名稱Inside Interesting Integrals網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Inside Interesting Integrals被引頻次




書目名稱Inside Interesting Integrals被引頻次學(xué)科排名




書目名稱Inside Interesting Integrals年度引用




書目名稱Inside Interesting Integrals年度引用學(xué)科排名




書目名稱Inside Interesting Integrals讀者反饋




書目名稱Inside Interesting Integrals讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:09:25 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:34:10 | 只看該作者
地板
發(fā)表于 2025-3-22 08:01:43 | 只看該作者
5#
發(fā)表于 2025-3-22 12:46:22 | 只看該作者
Using Power Series to Evaluate Integrals,integral from 1859, connecting the gamma and zeta functions, is derived. Continuing use is made of the tricks from the earlier chapters, including Feynman’s trick. Euler’s constant is developed as an integral formulation, and the digamma function is discussed.
6#
發(fā)表于 2025-3-22 14:01:38 | 只看該作者
Using , to Evaluate Integrals,ed by such pioneers as Euler to evaluate some challenging integrals. Such integrals include the Fresnel integrals, and Euler’s log-sine integral involving the zeta function. Euler’s famous identity .?=?cos?(.)?+?.?sin?(.) plays a central role these calculations. The use of the classic transforms of
7#
發(fā)表于 2025-3-22 19:48:17 | 只看該作者
Contour Integration,the Cauchy-Riemann equations are derived and the concept of an analytic function is introduced. That is followed with discussions of the integral theorems of Green and Cauchy, integrand singularities, the residue theorem, and the complications caused by multi-valued integrands (which leads to the co
8#
發(fā)表于 2025-3-22 22:16:08 | 只看該作者
9#
發(fā)表于 2025-3-23 04:29:32 | 只看該作者
10#
發(fā)表于 2025-3-23 06:53:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 21:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扎囊县| 浑源县| 华阴市| 金乡县| 怀仁县| 东山县| 都兰县| 斗六市| 普定县| 石林| 郑州市| 清原| 沅江市| 长宁区| 师宗县| 孟村| 巨野县| 平塘县| 迁安市| 驻马店市| 科尔| 金昌市| 会宁县| 淮安市| 田林县| 得荣县| 铜山县| 揭西县| 天柱县| 洛川县| 特克斯县| 齐河县| 汤阴县| 利津县| 灵川县| 宜丰县| 乌鲁木齐市| 尉氏县| 广汉市| 临潭县| 敦煌市|