找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Inside Interesting Integrals; A Collection of Snea Paul J. Nahin Textbook 20151st edition Springer Science+Business Media, LLC, part of Spr

[復(fù)制鏈接]
查看: 32979|回復(fù): 42
樓主
發(fā)表于 2025-3-21 19:32:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Inside Interesting Integrals
副標(biāo)題A Collection of Snea
編輯Paul J. Nahin
視頻videohttp://file.papertrans.cn/468/467781/467781.mp4
概述A "recipe book" with many valuable little-known integration techniques.Written with an accessible and easy-to-follow style by acclaimed popular science author and engineering professor Paul Nahin.Incl
叢書名稱Undergraduate Lecture Notes in Physics
圖書封面Titlebook: Inside Interesting Integrals; A Collection of Snea Paul J. Nahin Textbook 20151st edition Springer Science+Business Media, LLC, part of Spr
描述.What’s the point of calculating definite integrals since you can’t possibly do them all?..What makes doing the specific integrals in this book of value aren’t the specific answers we’ll obtain, but rather the methods we’ll use in obtaining those answers; methods you can use for evaluating the integrals you will encounter in the future..This book is written in a light-hearted manner for students who have completed the first year of college or high school AP calculus and have just a bit of exposure to the concept of a differential equation. Every result is fully derived. If you are fascinated by definite integrals, then this is a book for you..
出版日期Textbook 20151st edition
關(guān)鍵詞Differentiation Under the Integral; Dirichlet Integral; Euler Log-sine Integral; Feynman Integral; Integ
版次1
doihttps://doi.org/10.1007/978-1-4939-1277-3
isbn_ebook978-1-4939-1277-3Series ISSN 2192-4791 Series E-ISSN 2192-4805
issn_series 2192-4791
copyrightSpringer Science+Business Media, LLC, part of Springer Nature 2015
The information of publication is updating

書目名稱Inside Interesting Integrals影響因子(影響力)




書目名稱Inside Interesting Integrals影響因子(影響力)學(xué)科排名




書目名稱Inside Interesting Integrals網(wǎng)絡(luò)公開度




書目名稱Inside Interesting Integrals網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Inside Interesting Integrals被引頻次




書目名稱Inside Interesting Integrals被引頻次學(xué)科排名




書目名稱Inside Interesting Integrals年度引用




書目名稱Inside Interesting Integrals年度引用學(xué)科排名




書目名稱Inside Interesting Integrals讀者反饋




書目名稱Inside Interesting Integrals讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:29:52 | 只看該作者
,Feynman’s Favorite Trick, the integral.where α is the so-called . of the integral (. the dummy variable of integration which is, of course, x), then we wish to calculate the derivative of I with respect to α. We do that in just the way you’d expect, from the very definition of the derivative:
板凳
發(fā)表于 2025-3-22 00:52:14 | 只看該作者
地板
發(fā)表于 2025-3-22 05:24:30 | 只看該作者
,‘Easy’ Integrals,You should always be alert, when confronted by a definite integral, for the happy possibility that although the integral might look ‘interesting’ (that is, hard!) just . it will still yield to a direct, frontal attack. The first six integrals in this chapter are in that category. If a and b are positive constants, calculate:. and . and . and
5#
發(fā)表于 2025-3-22 10:49:47 | 只看該作者
6#
發(fā)表于 2025-3-22 15:30:26 | 只看該作者
Seven Not-So-Easy Integrals,As I mentioned in the Preface, in 1697 John Bernoulli evaluated the exotic-looking integral
7#
發(fā)表于 2025-3-22 18:02:20 | 只看該作者
Using , to Evaluate Integrals,The use of . to compute integrals is nicely illustrated with a quick example. Let’s use . to do
8#
發(fā)表于 2025-3-22 23:07:41 | 只看該作者
Paul J. NahinA "recipe book" with many valuable little-known integration techniques.Written with an accessible and easy-to-follow style by acclaimed popular science author and engineering professor Paul Nahin.Incl
9#
發(fā)表于 2025-3-23 05:17:42 | 只看該作者
Undergraduate Lecture Notes in Physicshttp://image.papertrans.cn/i/image/467781.jpg
10#
發(fā)表于 2025-3-23 07:24:18 | 只看該作者
https://doi.org/10.1007/978-1-4939-1277-3Differentiation Under the Integral; Dirichlet Integral; Euler Log-sine Integral; Feynman Integral; Integ
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 20:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙川县| 九江市| 石阡县| 马龙县| 正镶白旗| 监利县| 汕头市| 衡南县| 广元市| 余干县| 萝北县| 博客| 裕民县| 乌审旗| 岳阳市| 永和县| 华亭县| 台山市| 林口县| 清徐县| 渭南市| 林州市| 铜陵市| 长寿区| 自贡市| 嫩江县| 巧家县| 庐江县| 安塞县| 晴隆县| 肇东市| 罗定市| 门源| 海阳市| 千阳县| 文成县| 武功县| 秦皇岛市| 彭山县| 澎湖县| 大庆市|