找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Inpainting and Denoising Challenges; Sergio Escalera,Stephane Ayache,Xavier Baró Conference proceedings 2019 Springer Nature Switzerland A

[復制鏈接]
查看: 7353|回復: 43
樓主
發(fā)表于 2025-3-21 18:46:34 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Inpainting and Denoising Challenges
編輯Sergio Escalera,Stephane Ayache,Xavier Baró
視頻videohttp://file.papertrans.cn/468/467645/467645.mp4
概述Explores the latest trends in denoising and inpainting and goes beyond traditional methods in computer vision.Presents solutions to fast (real time) and accurate automatic removal of occlusions (text,
叢書名稱The Springer Series on Challenges in Machine Learning
圖書封面Titlebook: Inpainting and Denoising Challenges;  Sergio Escalera,Stephane Ayache,Xavier Baró Conference proceedings 2019 Springer Nature Switzerland A
描述.The problem of dealing with missing or incomplete data in machine learning and computer vision arises in many applications. Recent strategies make use of generative models to impute missing or corrupted data. Advances in computer vision using deep generative models have found applications in image/video processing, such as denoising, restoration, super-resolution, or inpainting.?.Inpainting and Denoising Challenges. comprises recent efforts dealing with image and video inpainting tasks. This includes winning solutions to the ChaLearn Looking at People inpainting and denoising challenges: human pose recovery, video de-captioning and fingerprint restoration.?.This volume starts with a wide review on image denoising, retracing and comparing various methods from the pioneer signal processing methods, to machine learning approaches with sparse and low-rank models, and recent deep learning architectures with autoencoders and variants. The following chapterspresent results from the Challenge, including three competition tasks at WCCI and ECML 2018. The top best approaches submitted by participants are described, showing interesting contributions and innovating methods. The last two chapt
出版日期Conference proceedings 2019
關(guān)鍵詞Machine Learning; Computer vision; Image processing; Video processing; Video de-capturing; Noisy data; Occ
版次1
doihttps://doi.org/10.1007/978-3-030-25614-2
isbn_softcover978-3-030-25616-6
isbn_ebook978-3-030-25614-2Series ISSN 2520-131X Series E-ISSN 2520-1328
issn_series 2520-131X
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Inpainting and Denoising Challenges影響因子(影響力)




書目名稱Inpainting and Denoising Challenges影響因子(影響力)學科排名




書目名稱Inpainting and Denoising Challenges網(wǎng)絡公開度




書目名稱Inpainting and Denoising Challenges網(wǎng)絡公開度學科排名




書目名稱Inpainting and Denoising Challenges被引頻次




書目名稱Inpainting and Denoising Challenges被引頻次學科排名




書目名稱Inpainting and Denoising Challenges年度引用




書目名稱Inpainting and Denoising Challenges年度引用學科排名




書目名稱Inpainting and Denoising Challenges讀者反饋




書目名稱Inpainting and Denoising Challenges讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:46:44 | 只看該作者
Joint Caption Detection and Inpainting Using Generative Network,8 Satellite Workshop Chalearn LAP Inpainting Competition Track 2 - Video decaptioning. We also secured the third rank in the competition. Most of our work is inspired by previous work on image generation and image inpainting.
板凳
發(fā)表于 2025-3-22 00:58:51 | 只看該作者
地板
發(fā)表于 2025-3-22 05:19:00 | 只看該作者
Generative Image Inpainting for Person Pose Generation,atures like faces. Our model can inpaint images with multiple holes of different sizes at various locations and can handle a wide variety of scenes. Our model produces decent results in reconstructing not only the occluded human parts but also the background. Most of our work is inspired by previous work on Image Generation and Image Inpainting.
5#
發(fā)表于 2025-3-22 09:39:07 | 只看該作者
6#
發(fā)表于 2025-3-22 12:56:08 | 只看該作者
FPD-M-net: Fingerprint Image Denoising and Inpainting Using M-net Based Convolutional Neural Networnoising and inpainting problem as a segmentation (foreground) task. Our architecture is based on the . with a change: structure similarity loss function, used for better extraction of the fingerprint from the noisy background. Our method outperforms the baseline method and achieves an overall 3rd rank in the .—..
7#
發(fā)表于 2025-3-22 19:08:44 | 只看該作者
Iterative Application of Autoencoders for Video Inpainting and Fingerprint Denoising,llows us to reduce loss via iteration and reuse a well-defined network. Results from two public challenges on video inpainting and fingerprint denoising suggest that performance is excellent and it can be a useful approach for image inpainting in general. Our codes are available online.
8#
發(fā)表于 2025-3-22 23:30:52 | 只看該作者
2520-131X al time) and accurate automatic removal of occlusions (text,.The problem of dealing with missing or incomplete data in machine learning and computer vision arises in many applications. Recent strategies make use of generative models to impute missing or corrupted data. Advances in computer vision us
9#
發(fā)表于 2025-3-23 02:03:52 | 只看該作者
10#
發(fā)表于 2025-3-23 09:36:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 01:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
金寨县| 洛浦县| 旬阳县| 南川市| 连山| 屯昌县| 韶关市| 乾安县| 高淳县| 乐清市| 万盛区| 富川| 溆浦县| 永修县| 原阳县| 贵溪市| 胶南市| 巴彦县| 靖江市| 九江市| 赣榆县| 河西区| 凉城县| 昭通市| 汶川县| 泰宁县| 孝义市| 麟游县| 卓尼县| 贺州市| 疏附县| 洞口县| 通州市| 神木县| 揭西县| 阳谷县| 常德市| 开封市| 托克逊县| 洛隆县| 山东省|