找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Innovations in VLSI, Signal Processing and Computational Technologies; Select Proceedings o Gayatri Mehta,Nilmini Wickramasinghe,Deepti Kak

[復(fù)制鏈接]
樓主: hydroxyapatite
51#
發(fā)表于 2025-3-30 09:22:04 | 只看該作者
Reinforcement Learning Method for Identifying Health Issues for People with Chronic Diseases,on accuracy and the convergence speed have been analysed for various data sets. It is based on the AutoLearn algorithm (ALA), which can identify a tool for determining elements in a data set and the broad variations of chronic diseases. The prediction accuracy and the convergence speed have been obt
52#
發(fā)表于 2025-3-30 15:55:31 | 只看該作者
Metrics Evaluation of Bell Pepper Disease Classification Using Deep Convolutional Neural Network (Der, experimental results are presented on bell pepper diseases for MobileNetV2 with better accuracy of 99.42%. The various performance metrics such as accuracy, precision, recall and F1-score, ROC curve are used to determine the accuracy of the model.
53#
發(fā)表于 2025-3-30 20:17:27 | 只看該作者
Enhanced Intracranial Tumor Strain Prediction and Detection Using Transfer and Multilevel Ensemble the next level of ensemble learning, where it achieved the accuracy of 96% with loss of 10% on training set and 91% accuracy with 14% loss on validation set. The training was done on 60 epochs. Analysis of factors affecting intracranial tumors includes use of Random Forest algorithms that gave 93%
54#
發(fā)表于 2025-3-30 22:26:56 | 只看該作者
55#
發(fā)表于 2025-3-31 00:56:57 | 只看該作者
Deep Learning-Based Multi-label Image Classification for Chest X-Rays,ng test data that has not yet been observed. With no patients from the training set appearing in the test set, 200 trials from 200 patients were randomly selected from the whole dataset. Our experimental setup gives results that are an improvement upon earlier work; thus, this study will provide gui
56#
發(fā)表于 2025-3-31 08:32:11 | 只看該作者
57#
發(fā)表于 2025-3-31 12:40:03 | 只看該作者
58#
發(fā)表于 2025-3-31 17:11:03 | 只看該作者
Innovations in VLSI, Signal Processing and Computational TechnologiesSelect Proceedings o
59#
發(fā)表于 2025-3-31 19:29:46 | 只看該作者
60#
發(fā)表于 2025-3-31 23:55:35 | 只看該作者
Innovations in VLSI, Signal Processing and Computational Technologies978-981-99-7077-3Series ISSN 1876-1100 Series E-ISSN 1876-1119
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 23:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
卓资县| 犍为县| 新建县| 纳雍县| 鄂尔多斯市| 光泽县| 汝城县| 濉溪县| 应用必备| 敦化市| 永德县| 项城市| 无为县| 灌南县| 武山县| 诏安县| 喀喇| 米林县| 枞阳县| 斗六市| 汉寿县| 黎平县| 湖北省| 乌兰察布市| 乌什县| 德保县| 朝阳区| 洞口县| 称多县| 资溪县| 贡山| 凌源市| 保德县| 高青县| 南康市| 定安县| 孝义市| 高安市| 汤原县| 连州市| 建水县|