找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Innovations in VLSI, Signal Processing and Computational Technologies; Select Proceedings o Gayatri Mehta,Nilmini Wickramasinghe,Deepti Kak

[復(fù)制鏈接]
樓主: hydroxyapatite
51#
發(fā)表于 2025-3-30 09:22:04 | 只看該作者
Reinforcement Learning Method for Identifying Health Issues for People with Chronic Diseases,on accuracy and the convergence speed have been analysed for various data sets. It is based on the AutoLearn algorithm (ALA), which can identify a tool for determining elements in a data set and the broad variations of chronic diseases. The prediction accuracy and the convergence speed have been obt
52#
發(fā)表于 2025-3-30 15:55:31 | 只看該作者
Metrics Evaluation of Bell Pepper Disease Classification Using Deep Convolutional Neural Network (Der, experimental results are presented on bell pepper diseases for MobileNetV2 with better accuracy of 99.42%. The various performance metrics such as accuracy, precision, recall and F1-score, ROC curve are used to determine the accuracy of the model.
53#
發(fā)表于 2025-3-30 20:17:27 | 只看該作者
Enhanced Intracranial Tumor Strain Prediction and Detection Using Transfer and Multilevel Ensemble the next level of ensemble learning, where it achieved the accuracy of 96% with loss of 10% on training set and 91% accuracy with 14% loss on validation set. The training was done on 60 epochs. Analysis of factors affecting intracranial tumors includes use of Random Forest algorithms that gave 93%
54#
發(fā)表于 2025-3-30 22:26:56 | 只看該作者
55#
發(fā)表于 2025-3-31 00:56:57 | 只看該作者
Deep Learning-Based Multi-label Image Classification for Chest X-Rays,ng test data that has not yet been observed. With no patients from the training set appearing in the test set, 200 trials from 200 patients were randomly selected from the whole dataset. Our experimental setup gives results that are an improvement upon earlier work; thus, this study will provide gui
56#
發(fā)表于 2025-3-31 08:32:11 | 只看該作者
57#
發(fā)表于 2025-3-31 12:40:03 | 只看該作者
58#
發(fā)表于 2025-3-31 17:11:03 | 只看該作者
Innovations in VLSI, Signal Processing and Computational TechnologiesSelect Proceedings o
59#
發(fā)表于 2025-3-31 19:29:46 | 只看該作者
60#
發(fā)表于 2025-3-31 23:55:35 | 只看該作者
Innovations in VLSI, Signal Processing and Computational Technologies978-981-99-7077-3Series ISSN 1876-1100 Series E-ISSN 1876-1119
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 21:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永平县| 盈江县| 尼勒克县| 德清县| 扎兰屯市| 招远市| 洛南县| 大厂| 晋中市| 逊克县| 泰安市| 海原县| 台北市| 大关县| 德令哈市| 鄯善县| 平武县| 鄢陵县| 张家港市| 抚州市| 鄂托克旗| 弥勒县| 河南省| 安多县| 博兴县| 永年县| 临沭县| 台东市| 东平县| 岑巩县| 根河市| 宜宾市| 承德市| 澄迈县| 临城县| 丹棱县| 九寨沟县| 仁化县| 铜梁县| 孝义市| 江永县|