找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Infrared Small Target Detection; Theory, Methods, and Hu Zhu,Yushan Pan,Guoxia Xu Book 2024 The Editor(s) (if applicable) and The Author(s)

[復(fù)制鏈接]
查看: 53184|回復(fù): 39
樓主
發(fā)表于 2025-3-21 18:10:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Infrared Small Target Detection
副標(biāo)題Theory, Methods, and
編輯Hu Zhu,Yushan Pan,Guoxia Xu
視頻videohttp://file.papertrans.cn/467/466278/466278.mp4
概述A Comprehensive and In-depth Introduction to Infrared Small Object Detection.Provides algorithm Comparison and Selection Guide.Presents practical Application-Oriented Approach
圖書封面Titlebook: Infrared Small Target Detection; Theory, Methods, and Hu Zhu,Yushan Pan,Guoxia Xu Book 2024 The Editor(s) (if applicable) and The Author(s)
描述.Uncover the secrets of cutting-edge research in “Infrared Small Target Detection,” a crucial resource that delves into the dynamic world of infrared imaging and detection algorithms. This comprehensive book is an indispensable gem for the research community, offering a profound introduction to the theory, methods, and algorithms underlying infrared small object detection. As an invaluable guide, this book explores diverse models and categories of infrared small object detection algorithms, providing meticulous descriptions and comparisons of their strengths and limitations. Perfectly tailored for researchers, practitioners, and students with a passion for infrared imaging and detection, this book equips readers with the necessary knowledge to embark on groundbreaking investigations in this field..Readers can particularly be drawn to the book‘s methods, results, and topics, encompassing diverse categories of infrared small object detection algorithms and their corresponding advantages and disadvantages. The book also imparts foundational knowledge in mathematical morphology, tensor decomposition, and deep learning, enabling readers to grasp the underlying principles of these advanc
出版日期Book 2024
關(guān)鍵詞Infrared target detection; Low-rank tensor decomposition; Small object detection; Mathematical morpholo
版次1
doihttps://doi.org/10.1007/978-981-99-9799-2
isbn_softcover978-981-99-9801-2
isbn_ebook978-981-99-9799-2
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Infrared Small Target Detection影響因子(影響力)




書目名稱Infrared Small Target Detection影響因子(影響力)學(xué)科排名




書目名稱Infrared Small Target Detection網(wǎng)絡(luò)公開度




書目名稱Infrared Small Target Detection網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Infrared Small Target Detection被引頻次




書目名稱Infrared Small Target Detection被引頻次學(xué)科排名




書目名稱Infrared Small Target Detection年度引用




書目名稱Infrared Small Target Detection年度引用學(xué)科排名




書目名稱Infrared Small Target Detection讀者反饋




書目名稱Infrared Small Target Detection讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:35:35 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:59:04 | 只看該作者
地板
發(fā)表于 2025-3-22 04:52:31 | 只看該作者
Summary and Outlook of Research on Infrared Small Target Detection,Additionally, we offer insights into the potential future developments and directions within this field. The chapter is structured into two primary parts: the concise summary of the research findings and the outlook for future research in this area.
5#
發(fā)表于 2025-3-22 10:28:32 | 只看該作者
Hu Zhu,Yushan Pan,Guoxia XuA Comprehensive and In-depth Introduction to Infrared Small Object Detection.Provides algorithm Comparison and Selection Guide.Presents practical Application-Oriented Approach
6#
發(fā)表于 2025-3-22 16:08:34 | 只看該作者
7#
發(fā)表于 2025-3-22 17:59:56 | 只看該作者
8#
發(fā)表于 2025-3-23 00:44:09 | 只看該作者
https://doi.org/10.1007/978-981-99-9799-2Infrared target detection; Low-rank tensor decomposition; Small object detection; Mathematical morpholo
9#
發(fā)表于 2025-3-23 02:04:09 | 只看該作者
Morphological Transformation for Infrared Small Object Detection,rmation of the target and unable to consider the feature of clutter. (b) Adaptively extracting sufficient local feature information for background suppression is hard for the structural element. In this section, we propose two different algorithms based on morphological transformation.
10#
發(fā)表于 2025-3-23 06:57:37 | 只看該作者
Deep Learning Methods for Infrared Small Object Detection,the important problems that required manual design of features in the past. Deep learning is a framework that includes several important algorithms. In recent years, in the field of infrared small target detection, many scholars have also proposed related models based on deep learning.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 03:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平乐县| 永平县| 鄢陵县| 濮阳县| 深泽县| 大石桥市| 巴林左旗| 闻喜县| 泸西县| 福建省| 霍山县| 襄汾县| 都匀市| 东光县| 呈贡县| 酉阳| 凤凰县| 文化| 平邑县| 宜宾市| 太保市| 龙口市| 丁青县| 绥芬河市| 竹北市| 来凤县| 广水市| 云浮市| 德钦县| 福贡县| 万宁市| 柳州市| 长沙县| 交口县| 明星| 蕉岭县| 濮阳县| 河曲县| 乐都县| 克什克腾旗| 龙门县|