找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Information Security and Cryptology – ICISC 2019; 22nd International C Jae Hong Seo Conference proceedings 2020 Springer Nature Switzerland

[復(fù)制鏈接]
樓主: Lactase
31#
發(fā)表于 2025-3-27 00:08:49 | 只看該作者
Sum It Up: Verifiable Additive Homomorphic Secret Sharing,ving .. More precisely, we employ: . homomorphic collision-resistant hash functions; . linear homomorphic signatures; as well as . a threshold RSA signature scheme. In all three cases we provide a detailed correctness, security and verifiability analysis and discuss their efficiency.
32#
發(fā)表于 2025-3-27 01:20:26 | 只看該作者
33#
發(fā)表于 2025-3-27 09:05:39 | 只看該作者
An Automated Security Analysis Framework and Implementation for MTD Techniques on Cloud,vious framework and designed, implemented and tested a cloud security assessment tool in a real cloud platform named UniteCloud. Our security solution can (1) monitor cloud computing in real-time, (2) automate the security modeling and analysis and visualize the GSMs using a Graphical User Interface
34#
發(fā)表于 2025-3-27 09:47:16 | 只看該作者
Faster Bootstrapping of FHE over the Integers,the scale-invariant FHE over the integers called CLT scheme, it takes 6?s for 500-bit message space and 80-bit security on a desktop. We also apply our bootstrapping method to the homomorphic evaluation of AES-128 circuit: It takes about 8?s per 128-bit block and is faster than the previous results
35#
發(fā)表于 2025-3-27 14:18:54 | 只看該作者
Complete Addition Law for Montgomery Curves, expense of additional storage for the two curve parameters and for the conversion between them. However, smart devices in IoT environments that mainly operate ECDH (for example, . mode of IETF RFC 7250) do not need to implement such a conversion if a complete addition law does exist for the Montgom
36#
發(fā)表于 2025-3-27 19:43:43 | 只看該作者
37#
發(fā)表于 2025-3-28 02:00:22 | 只看該作者
Dongyoung Roh,Bonwook Koo,Younghoon Jung,Il Woong Jeong,Dong-Geon Lee,Daesung Kwon,Woo-Hwan Kim
38#
發(fā)表于 2025-3-28 04:46:20 | 只看該作者
39#
發(fā)表于 2025-3-28 10:01:33 | 只看該作者
40#
發(fā)表于 2025-3-28 11:33:04 | 只看該作者
Máté Horváth,Levente Buttyán,Gábor Székely,Dóra Neubrandt
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 13:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
二连浩特市| 蕲春县| 囊谦县| 北辰区| 思南县| 萍乡市| 长垣县| 桃源县| 大余县| 广河县| 内丘县| 黄山市| 德化县| 青岛市| 太仓市| 新干县| 贡山| 廊坊市| 莱芜市| 太谷县| 安庆市| 苍梧县| 昌图县| 黄浦区| 尚志市| 平南县| 迁安市| 米泉市| 南部县| 古蔺县| 苏州市| 毕节市| 三江| 富锦市| 邹城市| 嘉义县| 贵定县| 勃利县| 礼泉县| 鹤壁市| 泸水县|