找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Information Security and Cryptology; 18th International C Yi Deng,Moti Yung Conference proceedings 2023 The Editor(s) (if applicable) and T

[復(fù)制鏈接]
樓主: 娛樂某人
21#
發(fā)表于 2025-3-25 05:24:20 | 只看該作者
How Fast Can SM4 be in?Software?tions of SM4 under Counter?(CTR) mode and Galois/Counter Mode?(GCM). Furthermore, since the overhead on (even optimized) data form transformations is non-negligible, we suggest some adjustments of CTR mode and GCM with respect to the bitsliced implementation, resulting in bitslicing-friendly variant
22#
發(fā)表于 2025-3-25 07:40:24 | 只看該作者
LLLWBC: A New Low-Latency Light-Weight Block Cipherovel key schedule to guarantee the .-reflection property. This allows an efficient fully unrolled implementation of . in hardware and the overhead of decryption on top of encryption is negligible. Moreover, because of the involutory property of extended GFS, the inverse round function is not needed,
23#
發(fā)表于 2025-3-25 12:39:50 | 只看該作者
New Automatic Search Tool for?Searching for?Impossible Differentials Using Undisturbed Bitsn improve the data complexity and time complexity of impossible differential cryptanalysis in some cases. In addition, using truncated impossible differentials can usually get better results when impossible differentials are of the same length. In this paper, we propose a new automatic search tool t
24#
發(fā)表于 2025-3-25 19:25:16 | 只看該作者
25#
發(fā)表于 2025-3-25 22:08:03 | 只看該作者
26#
發(fā)表于 2025-3-26 02:01:30 | 只看該作者
27#
發(fā)表于 2025-3-26 07:22:18 | 只看該作者
Generalized Boomerang Connectivity Table and?Improved Cryptanalysis of?GIFTincrease the probabilities of the 20-round GIFT-64 distinguisher from . to . and the 19-round GIFT-128 distinguisher from . to ., both of which are the highest so far. Applying the key recovery attack proposed by Dong et al. at Eurocrypt 2022 on the new distinguisher, we achieve the lowest complexit
28#
發(fā)表于 2025-3-26 09:47:45 | 只看該作者
Cryptanalysis of?Ciminionis observation. For an aggressive evolution of Ciminion called Aiminion, we recover the subkeys under these weak random numbers. Although we cannot recover the master key, the information disclosure of the subkeys also poses certain potential threats to the cryptographic algorithm. Our results can p
29#
發(fā)表于 2025-3-26 12:41:39 | 只看該作者
30#
發(fā)表于 2025-3-26 17:17:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 13:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
弥渡县| 开原市| 白城市| 泰顺县| 尉氏县| 大城县| 凯里市| 揭阳市| 吉安县| 宜黄县| 通渭县| 兴海县| 新疆| 德庆县| 淳化县| 唐山市| 太仆寺旗| 东海县| 繁昌县| 南川市| 兴化市| 陇西县| 鹤庆县| 桐庐县| 个旧市| 平昌县| 永定县| 二连浩特市| 特克斯县| 蒲城县| 博野县| 西和县| 巨鹿县| 额济纳旗| 额敏县| 营山县| 左权县| 隆回县| 临江市| 大英县| 怀安县|