找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Information Security Practice and Experience; 11th International C Javier Lopez,Yongdong Wu Conference proceedings 2015 Springer Internatio

[復(fù)制鏈接]
樓主: APL
31#
發(fā)表于 2025-3-26 22:38:04 | 只看該作者
32#
發(fā)表于 2025-3-27 03:01:19 | 只看該作者
33#
發(fā)表于 2025-3-27 05:39:14 | 只看該作者
Fault Attacks on Stream Cipher Scream key attacks, we can retrieve the key with 2. computations and 2. bytes memory. The result is verified by experiments. To the best of the our knowledge this is the first DFA and key recovery attack on Scream.
34#
發(fā)表于 2025-3-27 11:31:59 | 只看該作者
35#
發(fā)表于 2025-3-27 17:16:37 | 只看該作者
Partial Prime Factor Exposure Attacks on RSA and Its Takagi’s VariantBs) or least significant bits of . are exposed. Compared with previous results, our theoretical analysis and experimental results show a substantial improvement in reducing the number of known bits of the private key to factor ..
36#
發(fā)表于 2025-3-27 20:57:04 | 只看該作者
37#
發(fā)表于 2025-3-28 00:04:13 | 只看該作者
0302-9743 and Experience, ISPEC 2015, held in Beijing China, in May 2015. .The 38 papers presented in this volume were carefully reviewed and selected from 117 submissions. The regular papers are organized in topical sections named: system security, stream cipher, analysis, key exchange protocol, elliptic cu
38#
發(fā)表于 2025-3-28 04:58:28 | 只看該作者
Models of Curves from GHS Attack in Odd Characteristiccomputed. In this paper, we show that his method works without that condition. We also give explicit map from the covering to the original curve if the covering is hyperelliptic. Our method is based on a formula for the embedding of rational subfield of the function field of (hyper)elliptic curve in that of the hyperelliptic covering.
39#
發(fā)表于 2025-3-28 08:11:46 | 只看該作者
Some Elliptic Subcovers of Genus 3 Hyperelliptic Curvesrves of genus 3. In this paper, we study the properties of elliptic subcovers of genus 3 hyperelliptic curves. Using these properties, we find some minimal elliptic subcovers of degree 4, which can not be constructed by GHS attack.
40#
發(fā)表于 2025-3-28 14:21:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白沙| 西藏| 剑川县| 石屏县| 平原县| 嘉义县| 南木林县| 怀安县| 泸定县| 边坝县| 南开区| 收藏| 阿拉善盟| 定州市| 正定县| 曲阳县| 巢湖市| 博爱县| 定安县| 宜宾市| 延川县| 象州县| 宣汉县| 宣威市| 泰宁县| 铜鼓县| 马鞍山市| 溆浦县| 闵行区| 区。| 屯门区| 秦皇岛市| 陇川县| 新丰县| 邮箱| 吴旗县| 二连浩特市| 苏尼特左旗| 五指山市| 长岛县| 阿坝县|