找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Information Processing in Medical Imaging; 28th International C Alejandro Frangi,Marleen de Bruijne,Nassir Navab Conference proceedings 202

[復(fù)制鏈接]
樓主: Objective
51#
發(fā)表于 2025-3-30 09:15:40 | 只看該作者
MetaViT: Metabolism-Aware Vision Transformer for?Differential Diagnosis of?Parkinsonism with?,F-FDG ) is crucial for informing prognosis and determining treatment strategies. Current automated differential diagnosis methods for .F-fluorodeoxyglucose (.F-FDG) positron emission tomography (PET) scans, such as convolutional neural networks (CNNs), often focus on local brain regions and do not explici
52#
發(fā)表于 2025-3-30 16:11:58 | 只看該作者
Multi-task Multi-instance Learning for?Jointly Diagnosis and?Prognosis of?Early-Stage Breast Invasivd to estimate the clinical outcome of human cancers. However, most of the existing studies treat the prognosis and diagnosis tasks separately, which overlooks the fact that the diagnosis information indicating the severity of the disease that is highly related to the patients’ survival. In addition,
53#
發(fā)表于 2025-3-30 18:14:36 | 只看該作者
On Fairness of?Medical Image Classification with?Multiple Sensitive Attributes via?Learning Orthogontreatments for patients with multiple sensitive demographic attributes, which is a crucial yet challenging problem for real-world clinical applications. In this paper, we propose a novel method for fair representation learning with respect to multi-sensitive attributes. We pursue the independence be
54#
發(fā)表于 2025-3-30 21:49:34 | 只看該作者
Pixel-Level Explanation of?Multiple Instance Learning Models in?Biomedical Single Cell Imagesg provides instance-level explainability, however for many clinical applications a deeper, pixel-level explanation is desirable, but missing so far. In this work, we investigate the use of four attribution methods to explain a multiple instance learning models: GradCAM, Layer-Wise Relevance Propagat
55#
發(fā)表于 2025-3-31 04:22:54 | 只看該作者
Transient Hemodynamics Prediction Using an?Efficient Octree-Based Deep Learning Modellities are not able to accurately acquire high-resolution hemodynamic information that would be required to assess complex neurovascular pathologies. Instead, computational fluid dynamics (CFD) simulations can be applied to tomographic reconstructions to obtain clinically relevant information. Howev
56#
發(fā)表于 2025-3-31 06:59:09 | 只看該作者
Weakly Semi-supervised Detection in?Lung Ultrasound Videosata. We propose a method for improving object detection in medical videos through weak supervision from video-level labels. More concretely, we aggregate individual detection predictions into video-level predictions and extend a teacher-student training strategy to provide additional supervision via
57#
發(fā)表于 2025-3-31 10:56:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 01:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
望都县| 漳州市| 蒲江县| 五台县| 安国市| 普格县| 晋江市| 康保县| 安远县| 津南区| 阳朔县| 昌黎县| 荆州市| 类乌齐县| 高州市| 乌什县| 会东县| 阿拉尔市| 隆安县| 湖南省| 南投市| 江永县| 中卫市| 汤阴县| 柳河县| 鄯善县| 澄城县| 津南区| 柏乡县| 长白| 乐昌市| 西安市| 永登县| 越西县| 旺苍县| 尉犁县| 宁明县| 阿图什市| 广宗县| 临高县| 昭通市|