找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Information Processing in Medical Imaging; 28th International C Alejandro Frangi,Marleen de Bruijne,Nassir Navab Conference proceedings 202

[復(fù)制鏈接]
樓主: Objective
51#
發(fā)表于 2025-3-30 09:15:40 | 只看該作者
MetaViT: Metabolism-Aware Vision Transformer for?Differential Diagnosis of?Parkinsonism with?,F-FDG ) is crucial for informing prognosis and determining treatment strategies. Current automated differential diagnosis methods for .F-fluorodeoxyglucose (.F-FDG) positron emission tomography (PET) scans, such as convolutional neural networks (CNNs), often focus on local brain regions and do not explici
52#
發(fā)表于 2025-3-30 16:11:58 | 只看該作者
Multi-task Multi-instance Learning for?Jointly Diagnosis and?Prognosis of?Early-Stage Breast Invasivd to estimate the clinical outcome of human cancers. However, most of the existing studies treat the prognosis and diagnosis tasks separately, which overlooks the fact that the diagnosis information indicating the severity of the disease that is highly related to the patients’ survival. In addition,
53#
發(fā)表于 2025-3-30 18:14:36 | 只看該作者
On Fairness of?Medical Image Classification with?Multiple Sensitive Attributes via?Learning Orthogontreatments for patients with multiple sensitive demographic attributes, which is a crucial yet challenging problem for real-world clinical applications. In this paper, we propose a novel method for fair representation learning with respect to multi-sensitive attributes. We pursue the independence be
54#
發(fā)表于 2025-3-30 21:49:34 | 只看該作者
Pixel-Level Explanation of?Multiple Instance Learning Models in?Biomedical Single Cell Imagesg provides instance-level explainability, however for many clinical applications a deeper, pixel-level explanation is desirable, but missing so far. In this work, we investigate the use of four attribution methods to explain a multiple instance learning models: GradCAM, Layer-Wise Relevance Propagat
55#
發(fā)表于 2025-3-31 04:22:54 | 只看該作者
Transient Hemodynamics Prediction Using an?Efficient Octree-Based Deep Learning Modellities are not able to accurately acquire high-resolution hemodynamic information that would be required to assess complex neurovascular pathologies. Instead, computational fluid dynamics (CFD) simulations can be applied to tomographic reconstructions to obtain clinically relevant information. Howev
56#
發(fā)表于 2025-3-31 06:59:09 | 只看該作者
Weakly Semi-supervised Detection in?Lung Ultrasound Videosata. We propose a method for improving object detection in medical videos through weak supervision from video-level labels. More concretely, we aggregate individual detection predictions into video-level predictions and extend a teacher-student training strategy to provide additional supervision via
57#
發(fā)表于 2025-3-31 10:56:49 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 15:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌苏市| 利辛县| 新建县| 团风县| 桃源县| 连南| 封丘县| 准格尔旗| 靖安县| 庆云县| 淮南市| 百色市| 曲水县| 石柱| 晋宁县| 济源市| 蚌埠市| 左权县| 泾川县| 铅山县| 宁波市| 卓尼县| 济宁市| 麦盖提县| 阳新县| 延吉市| 镇巴县| 瑞昌市| 亚东县| 宜阳县| 广南县| 日照市| 大城县| 翁源县| 伊宁县| 运城市| 成都市| 建水县| 乳源| 皮山县| 永仁县|