找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Information Geometry; Nihat Ay,Jürgen Jost,Lorenz Schwachh?fer Book 2017 Springer International Publishing AG 2017 60A10, 62B05, 62B10, 62

[復(fù)制鏈接]
樓主: 銀河
11#
發(fā)表于 2025-3-23 10:43:56 | 只看該作者
12#
發(fā)表于 2025-3-23 14:02:53 | 只看該作者
13#
發(fā)表于 2025-3-23 19:06:57 | 只看該作者
Finite Information Geometry,es the characteristic properties of the Fisher and Amari–Chentsov tensors for finite sample spaces, setting the stage for corresponding results for general sample spaces in subsequent chapters. It also introduces divergences and exponential and mixture families of probability distributions and descr
14#
發(fā)表于 2025-3-24 00:09:52 | 只看該作者
15#
發(fā)表于 2025-3-24 06:26:02 | 只看該作者
The Intrinsic Geometry of Statistical Models,d a pair of torsion free connections that are dual w.r.t. .. Such a structure is equivalently given in terms of a metric tensor . and a 3-symmetric tensor ., a . in the sense of Lauritzen. We close the circle with Lê’s embedding theorem that says that any such (not necessarily) compact statistical m
16#
發(fā)表于 2025-3-24 08:33:27 | 只看該作者
17#
發(fā)表于 2025-3-24 10:44:16 | 只看該作者
18#
發(fā)表于 2025-3-24 18:11:17 | 只看該作者
Introduction,ular probability measure that best fits that sampling distribution, and the surprisingly rich and useful geometric structure underlying this. The latter is the topic of this book. A basic geometry quantity, the Fisher metric, a 2-tensor, measures how sensitively the distributions depend on the sampl
19#
發(fā)表于 2025-3-24 21:54:34 | 只看該作者
Finite Information Geometry,wo complementary ways to view a probability distribution. One consists in viewing it as (positive) measure with total mass 1. The other considers it as an equivalence class of such measures, determined up to a global scaling factor. The natural geometry underlying the first is that of the unit simpl
20#
發(fā)表于 2025-3-25 01:34:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 22:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
刚察县| 屏南县| 新晃| 岫岩| 平潭县| 福建省| 中方县| 巴彦淖尔市| 中牟县| 宁化县| 西贡区| 泗洪县| 溧阳市| 仁布县| 孝昌县| 蓝田县| 嘉禾县| 田阳县| 临沧市| 永宁县| 电白县| 邵阳市| 广昌县| 万宁市| 桃园县| 泾川县| 湘潭市| 巴林左旗| 葵青区| 巫溪县| 靖边县| 固安县| 乌兰察布市| 博爱县| 唐山市| 苗栗县| 时尚| 拉萨市| 专栏| 永兴县| 洛川县|