找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Information Criteria and Statistical Modeling; Sadanori Konishi,Genshiro Kitagawa Book 2008 Springer-Verlag New York 2008 Akaike informati

[復制鏈接]
樓主: affidavit
31#
發(fā)表于 2025-3-26 21:08:16 | 只看該作者
Statistical Models,s are used to acquire various types of information in the model-building process. By using regression and time series models as specific examples, we also discuss why evaluation of statistical models is necessary.
32#
發(fā)表于 2025-3-27 03:18:44 | 只看該作者
33#
發(fā)表于 2025-3-27 06:41:34 | 只看該作者
Statistical Modeling by AIC,as comparisons of several statistical models. In this chapter, we consider using the AIC for various statistical inference problems such as checking the equality of distributions, determining the bin size of a histogram, selecting the order for regression models, detecting structural changes, determ
34#
發(fā)表于 2025-3-27 12:03:43 | 只看該作者
Generalized Information Criterion (GIC),ized information criterion, GIC [Konishi and Kitagawa (1996)]. The GIC can be applied to evaluate statistical models constructed by various types of estimation procedures including the robust estimation procedure and the maximum penalized likelihood procedure. Section 5.1 describes the fundamentals
35#
發(fā)表于 2025-3-27 14:51:30 | 只看該作者
Statistical Modeling by GIC,complex structure. Crucial issues associated with nonlinear modeling are the choice of adjusted parameters including the smoothing parameter, the number of basis functions in splines and .-splines, and the number of hidden units in neural networks. Selection of these parameters in the modeling proce
36#
發(fā)表于 2025-3-27 18:14:52 | 只看該作者
Theoretical Development and Asymptotic Properties of the GIC,ivalently, the expected log-likelihood of a statistical model for prediction..In this chapter, we introduce a general framework for constructing information criteria in the context of functional statistics and give technical arguments and a detailed derivation of the generalized information criterio
37#
發(fā)表于 2025-3-27 22:17:19 | 只看該作者
38#
發(fā)表于 2025-3-28 04:34:25 | 只看該作者
Bayesian Information Criteria,ation criterion (BIC) is described. The BIC is also extended such that it can be applied to the evaluation of models estimated by regularization. Section 9.2 presents Akaike’s Bayesian information criterion (ABIC) developed for the evaluation of Bayesian models having prior distributions with hyperp
39#
發(fā)表于 2025-3-28 08:20:13 | 只看該作者
Various Model Evaluation Criteria,ch. The AIC-type criteria were constructed as estimators of the Kullback–Leibler information between a statistical model and the true distribution generating the data or equivalently the expected log-likelihood of a statistical model. In contrast, the Bayes approach for selecting a model was to choo
40#
發(fā)表于 2025-3-28 11:15:11 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-24 13:06
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
炎陵县| 洞口县| 通许县| 新邵县| 大洼县| 锦州市| 广饶县| 衡山县| 夏河县| 阳曲县| 屯门区| 稻城县| 佛教| 涟水县| 石楼县| 永和县| 尼玛县| 宁德市| 邯郸市| 陆河县| 江永县| 永登县| 宜丰县| 腾冲县| 松原市| 开江县| 句容市| 渭南市| 溧阳市| 黑水县| 和顺县| 乌审旗| 仙居县| 长宁区| 思南县| 泽普县| 东乌珠穆沁旗| 武汉市| 富民县| 基隆市| 龙海市|