找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Infinity Properads and Infinity Wheeled Properads; Philip Hackney,Marcy Robertson,Donald Yau Book 2015 Springer International Publishing S

[復(fù)制鏈接]
樓主: Jejunum
11#
發(fā)表于 2025-3-23 12:56:07 | 只看該作者
12#
發(fā)表于 2025-3-23 15:48:40 | 只看該作者
13#
發(fā)表于 2025-3-23 21:26:53 | 只看該作者
al Science at the Karl-Franzens-University Graz..Dr. Rudolf Egger is a university professor for empirical learning environment research and university didactics at the Institute for Education and Educational Sc978-3-658-39677-0978-3-658-39678-7
14#
發(fā)表于 2025-3-23 22:47:09 | 只看該作者
Philip Hackney,Marcy Robertson,Donald Yaual Science at the Karl-Franzens-University Graz..Dr. Rudolf Egger is a university professor for empirical learning environment research and university didactics at the Institute for Education and Educational Sc978-3-658-39677-0978-3-658-39678-7
15#
發(fā)表于 2025-3-24 06:18:36 | 只看該作者
16#
發(fā)表于 2025-3-24 07:07:34 | 只看該作者
Introduction,e graph generates a properad, giving rise to the graphical category . of properads. Using graphical analogs of coface maps and the properadic nerve functor, an .-properad is defined as an object in the graphical set category . that satisfies some inner horn extension property. Symmetric monoidal clo
17#
發(fā)表于 2025-3-24 13:02:04 | 只看該作者
18#
發(fā)表于 2025-3-24 15:10:07 | 只看該作者
19#
發(fā)表于 2025-3-24 20:20:55 | 只看該作者
Symmetric Monoidal Closed Structure on Properadsed by Boardman and Vogt (.. Lecture Notes in Mathematics, vol. 347, Springer, Berlin, 1973). One main result of this chapter gives a simple description of the tensor product of two free properads in terms of the two generating sets. In particular, when the free properads are finitely generated, thei
20#
發(fā)表于 2025-3-25 01:50:45 | 只看該作者
Graphical Properads of elements precisely when the generating graph is not simply connected. The discussion of the tensor product of free properads in Chap.?. applies in particular to graphical properads. Then we illustrate with several examples that a general properad map between graphical properads may exhibit bad b
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
封丘县| 得荣县| 家居| 班戈县| 隆安县| 旺苍县| 芦溪县| 武隆县| 泗洪县| 汝南县| 温宿县| 南昌县| 苏尼特右旗| 石泉县| 晋江市| 胶南市| 邳州市| 盘山县| 玛曲县| 聊城市| 鄯善县| 德庆县| 库车县| 体育| 灌阳县| 柯坪县| 静宁县| 淮南市| 托克逊县| 沾化县| 永丰县| 古浪县| 集安市| 城口县| 遂川县| 灵武市| 乌拉特中旗| 孙吴县| 瑞金市| 海阳市| 蓬安县|