找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Infinitesimal Analysis; E. I. Gordon,A. G. Kusraev,S. S. Kutateladze Book 2002 Springer Science+Business Media Dordrecht 2002 functional.f

[復(fù)制鏈接]
查看: 28485|回復(fù): 42
樓主
發(fā)表于 2025-3-21 17:44:05 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Infinitesimal Analysis
編輯E. I. Gordon,A. G. Kusraev,S. S. Kutateladze
視頻videohttp://file.papertrans.cn/465/464651/464651.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Infinitesimal Analysis;  E. I. Gordon,A. G. Kusraev,S. S. Kutateladze Book 2002 Springer Science+Business Media Dordrecht 2002 functional.f
描述.Infinitesimal analysis, once a synonym for calculus, is now viewed as a technique for studying the properties of an arbitrary mathematical object by discriminating between its standard and nonstandard constituents. Resurrected by A. Robinson in the early 1960‘s with the epithet ‘nonstandard‘, infinitesimal analysis not only has revived the methods of infinitely small and infinitely large quantities, which go back to the very beginning of calculus, but also has suggested many powerful tools for research in every branch of modern mathematics...The book sets forth the basics of the theory, as well as the most recent applications in, for example, functional analysis, optimization, and harmonic analysis. The concentric style of exposition enables this work to serve as an elementary introduction to one of the most promising mathematical technologies, while revealing up-to-date methods of monadology and hyperapproximation...This is a companion volume to the earlier works on nonstandard methods of analysis by A.G. Kusraev and S.S. Kutateladze (1999), ISBN 0-7923-5921-6 and Nonstandard Analysis and Vector Lattices edited by S.S. Kutateladze (2000), ISBN 0-7923-6619-0 .
出版日期Book 2002
關(guān)鍵詞functional; functional analysis; harmonic analysis; vector lattice
版次1
doihttps://doi.org/10.1007/978-94-017-0063-4
isbn_softcover978-90-481-6070-9
isbn_ebook978-94-017-0063-4
copyrightSpringer Science+Business Media Dordrecht 2002
The information of publication is updating

書目名稱Infinitesimal Analysis影響因子(影響力)




書目名稱Infinitesimal Analysis影響因子(影響力)學(xué)科排名




書目名稱Infinitesimal Analysis網(wǎng)絡(luò)公開度




書目名稱Infinitesimal Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Infinitesimal Analysis被引頻次




書目名稱Infinitesimal Analysis被引頻次學(xué)科排名




書目名稱Infinitesimal Analysis年度引用




書目名稱Infinitesimal Analysis年度引用學(xué)科排名




書目名稱Infinitesimal Analysis讀者反饋




書目名稱Infinitesimal Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:17:22 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:53:04 | 只看該作者
Technique of Hyperapproximation,ies a search for finite or at least finite-dimensional approximants that are infinitely close in some sense to the original objects. The analogy with the ubiquitous sequential schemes suggests that the “finiteness” in these approaches should involve actual infinites.
地板
發(fā)表于 2025-3-22 07:09:20 | 只看該作者
5#
發(fā)表于 2025-3-22 08:51:31 | 只看該作者
Monads in General Topology,The set-theoretic stance of mathematics has provided us with the environment known today as general topology for studying continuity and proximity since the beginning of the 20th century.
6#
發(fā)表于 2025-3-22 13:02:08 | 只看該作者
Infinitesimals and Subdifferentials,Infinitesimal analysis finds various applications in many areas of mathematics. In this chapter we discuss infinitesimals in ., a branch of functional analysis which stems from the theory of extremal problems.
7#
發(fā)表于 2025-3-22 20:57:36 | 只看該作者
8#
發(fā)表于 2025-3-23 00:30:06 | 只看該作者
9#
發(fā)表于 2025-3-23 04:37:28 | 只看該作者
10#
發(fā)表于 2025-3-23 08:39:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 15:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗江县| 民权县| 来宾市| 五原县| 永安市| 鄂州市| 太白县| 龙山县| 通州市| 寿阳县| 毕节市| 西乌珠穆沁旗| 甘泉县| 太康县| 宽甸| 措勤县| 仙游县| 阿拉尔市| 北川| 郎溪县| 翁牛特旗| 平凉市| 诸城市| 迁安市| 怀集县| 平塘县| 盖州市| 平安县| 拜泉县| 五指山市| 乌审旗| 宝应县| 冷水江市| 顺平县| 白山市| 炎陵县| 华坪县| 隆林| 三河市| 海宁市| 抚顺县|