找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Infinite-Horizon Optimal Control in the Discrete-Time Framework; Jo?l Blot,Na?la Hayek Book 2014 Jo?l Blot, Na?la Hayek 2014 Infinite Hori

[復(fù)制鏈接]
查看: 12623|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:39:42 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Infinite-Horizon Optimal Control in the Discrete-Time Framework
編輯Jo?l Blot,Na?la Hayek
視頻videohttp://file.papertrans.cn/465/464649/464649.mp4
概述Examines the Pontryagin principle using a Karush-Kuhn-Tucker theorem in ordered Banach spaces.Includes findings on the finite-horizon setting based on the Boltyanski and Michel results.Uses various to
叢書名稱SpringerBriefs in Optimization
圖書封面Titlebook: Infinite-Horizon Optimal Control in the Discrete-Time Framework;  Jo?l Blot,Na?la Hayek Book 2014 Jo?l Blot, Na?la Hayek 2014 Infinite Hori
描述????In this book?the authors take?a rigorous look at the infinite-horizon discrete-time optimal?control theory from the viewpoint of Pontryagin’s principles. Several Pontryagin principles ?are described which govern systems and various criteria which define the notions of optimality, along with a detailed analysis of how each Pontryagin principle relate to each other. The Pontryagin principle is examined in a stochastic setting and results are given which generalize Pontryagin’s principles to multi-criteria problems.??Infinite-Horizon Optimal Control in the Discrete-Time Framework??is aimed toward researchers and PhD students in various scientific fields such as mathematics, applied mathematics, economics, management, sustainable development (such as, of fisheries and of forests), and ?Bio-medical sciences who are drawn to infinite-horizon discrete-time optimal control problems.
出版日期Book 2014
關(guān)鍵詞Infinite Horizon; Karush-Kuhn-Tuckey Theorems; Maximum principle of Pontryagin; Optimal Control; discret
版次1
doihttps://doi.org/10.1007/978-1-4614-9038-8
isbn_softcover978-1-4614-9037-1
isbn_ebook978-1-4614-9038-8Series ISSN 2190-8354 Series E-ISSN 2191-575X
issn_series 2190-8354
copyrightJo?l Blot, Na?la Hayek 2014
The information of publication is updating

書目名稱Infinite-Horizon Optimal Control in the Discrete-Time Framework影響因子(影響力)




書目名稱Infinite-Horizon Optimal Control in the Discrete-Time Framework影響因子(影響力)學(xué)科排名




書目名稱Infinite-Horizon Optimal Control in the Discrete-Time Framework網(wǎng)絡(luò)公開度




書目名稱Infinite-Horizon Optimal Control in the Discrete-Time Framework網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Infinite-Horizon Optimal Control in the Discrete-Time Framework被引頻次




書目名稱Infinite-Horizon Optimal Control in the Discrete-Time Framework被引頻次學(xué)科排名




書目名稱Infinite-Horizon Optimal Control in the Discrete-Time Framework年度引用




書目名稱Infinite-Horizon Optimal Control in the Discrete-Time Framework年度引用學(xué)科排名




書目名稱Infinite-Horizon Optimal Control in the Discrete-Time Framework讀者反饋




書目名稱Infinite-Horizon Optimal Control in the Discrete-Time Framework讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:26:10 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:52:24 | 只看該作者
地板
發(fā)表于 2025-3-22 06:24:56 | 只看該作者
Infinite-Horizon Optimal Control in the Discrete-Time Framework
5#
發(fā)表于 2025-3-22 11:47:17 | 只看該作者
6#
發(fā)表于 2025-3-22 14:09:42 | 只看該作者
Presentation of the Problems and Tools of the Finite Horizon,overned by difference equations or by difference inequations. We define four optimality criterions on such systems. In Sect. ., we describe a method that we call the reduction to finite horizon: we associate to an optimal process of an infinite-horizon problem a sequence of finite-horizon problems f
7#
發(fā)表于 2025-3-22 19:28:37 | 只看該作者
Infinite-Horizon Theorems,h are obtained through the method of reduction to finite horizon. We successively use two additional conditions to obtain results in the infinite-horizon setting from results of the finite-horizon setting. In Sect. . we present several strong maximum principles which are obtained through the method
8#
發(fā)表于 2025-3-23 00:07:55 | 只看該作者
9#
發(fā)表于 2025-3-23 01:27:46 | 只看該作者
10#
發(fā)表于 2025-3-23 07:04:58 | 只看該作者
https://doi.org/10.1007/978-1-4614-9038-8Infinite Horizon; Karush-Kuhn-Tuckey Theorems; Maximum principle of Pontryagin; Optimal Control; discret
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 03:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富蕴县| 南昌市| 手游| 蒲江县| 普兰店市| 南充市| 治县。| 文山县| 合川市| 宁陵县| 新巴尔虎左旗| 翁牛特旗| 乌兰浩特市| 图木舒克市| 淮阳县| 张北县| 彭阳县| 绥宁县| 伊金霍洛旗| 凤城市| 灵川县| 周宁县| 奎屯市| 建瓯市| 措美县| 长垣县| 庄河市| 宾川县| 治多县| 灵璧县| 资阳市| 玉山县| 贵阳市| 庆元县| 绵竹市| 鄱阳县| 寿宁县| 晋江市| 青州市| 北流市| 大洼县|