找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Infinite Horizon Optimal Control; Deterministic and St Dean A. Carlson,Alain B. Haurie,Arie Leizarowitz Book 1991Latest edition Springer-Ve

[復(fù)制鏈接]
樓主: TIBIA
21#
發(fā)表于 2025-3-25 04:32:23 | 只看該作者
22#
發(fā)表于 2025-3-25 09:59:24 | 只看該作者
Stochastic Control with the Overtaking Criterion,s; nevertheless we will mainly concentrate on controlled diffusion processes in ?.. Other systems which may be studied similarly are controlled Markov chains with finite (or denumerable) number of states, and random evolution piecewise deterministic controlled systems, which will be further considered in Chapter 11.
23#
發(fā)表于 2025-3-25 14:24:17 | 只看該作者
http://image.papertrans.cn/i/image/464634.jpg
24#
發(fā)表于 2025-3-25 19:24:17 | 只看該作者
25#
發(fā)表于 2025-3-25 22:00:22 | 只看該作者
26#
發(fā)表于 2025-3-26 02:29:29 | 只看該作者
Asymptotic Stability with a Discounted Criterion; Global and Local Analysis,In this chapter, the global asymptotic stability (GAS) property of optimally controlled systems with an infinite time horizon will be further explored by considering the case where the criterion has the following form:
27#
發(fā)表于 2025-3-26 04:30:16 | 只看該作者
Control of Systems with Integrodifferential Equations,It has long been recognized that time delays are important in formulating economic models. This was observed as early as 1935 when Kalecki [109] introduced a class of such models described by linear differential-difference equations. These models were further developed by Leontief [125] and others. To quote Gandolfo’s 1971 text [82]:
28#
發(fā)表于 2025-3-26 09:39:38 | 只看該作者
29#
發(fā)表于 2025-3-26 15:28:41 | 只看該作者
30#
發(fā)表于 2025-3-26 18:54:49 | 只看該作者
Book 1991Latest editione intervals. For these problems the performance criterion is described by an improper integral and it is possible that, when evaluated at a given admissible element, this criterion is unbounded. To cope with this divergence new optimality concepts, referred to here as overtaking optimality, weakly o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 11:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涟水县| 清原| 保亭| 蓬安县| 乌兰察布市| 上虞市| 平泉县| 聂荣县| 潮安县| 怀柔区| 宜宾县| 延庆县| 怀宁县| 碌曲县| 上饶市| 东乡| 平顶山市| 博乐市| 安溪县| 航空| 泰安市| 呼伦贝尔市| 北海市| 安图县| 马关县| 江阴市| 彭州市| 青龙| 海林市| 松潘县| 麻阳| 奉化市| 广宁县| 太白县| 蛟河市| 兰溪市| 阜阳市| 北碚区| 榆林市| 和静县| 金秀|